Potential of Five-Leaved Chaste Tree (Vitex negundo L.) Leaves as Source of Natural Dye from Supercritical Carbon Dioxide (SC-CO2) Extraction

2013 ◽  
Vol 594-595 ◽  
pp. 207-213
Author(s):  
T.A.T. Mohd ◽  
Nur Hashimah Alias ◽  
Nurul Aimi Ghazali ◽  
A. Azizi ◽  
Idris S. Adeib ◽  
...  

Natural dyes represent a sustainable source of colorants, which are low cost and safer than synthetic dyes, concerning human health. The purpose of this study is to extract Vitex negundo L. leaves using supercritical carbon dioxide extraction and to identify the extracts potential as a dye. The extraction process has been conducted at different operating conditions by varying temperature from 40 to 65°C with an increment of 5°C at 20, 25, and 30 MPa within 60 minutes constant time. The extracts obtained at different conditions were analyzed using Gas Chromatography Mass Spectrometer (GC-MS) to determine the chemical compounds present. Increase of temperature increased the extraction yield, but further increasing the temperature above 50°C has reduced the yield. The effect of pressure gave two different patterns, in which the first one showed the yield kept increasing with pressure (20 to 30 MPa) at 40, 45, 50, and 55°C. The second pattern showed sudden reduction of yield above 25 MPa at another two higher temperatures. The highest extraction yield (13.94 mg/g) was obtained at 30 MPa and 50°C which considered as optimum operating condition. GC-MS analysis showed the presence of several phytochemicals including some flavonoid compounds, which are potential sources of dye.

2015 ◽  
Vol 74 (7) ◽  
Author(s):  
Mohd Azizi Che Yunus ◽  
Salman Zhari ◽  
Saharudin Haron ◽  
Nur Husnina Arsad ◽  
Zuhaili Idham ◽  
...  

Pithecellobium Jiringan (P. Jiringan) is traditionally known as natural herb consists of several medicinal compounds (vitamin E). Supercritical carbon dioxide extraction (SC-CO2) has been proven as potential method to extract interest compound from herbs. By altering pressure and temperature, the specific compound can be extracted. In this study, the SC-CO2 operating conditions are pressure (20.68 MPa to 55.16 MPa) and temperature (40°C to 80°C) in one hour extraction regime was used to extract vitamin E from P. jiringan. The quantification of vitamin E was analysed with Gas Chromatography Time of Flight Mass Spectrometry (GC-TOF-MS). The responses are overall oil yield and vitamin E yield. The overall oil yield was obtained at the highest condition of 55.16 MPa and 80°C with asymptotic yield of 8.06%. In contrast, the highest amount of vitamin E obtained is 0.0458mg/g sample (80.14 ppm) at the lowest extraction condition of 20.68 MPa and 40ᵒC.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ming-Chi Wei ◽  
Yu-Chiao Yang ◽  
Show-Jen Hong

Oleanolic acid (OA) and ursolic acid (UA) were extracted fromHedyotis diffusausing a hyphenated procedure of ultrasound-assisted and supercritical carbon dioxide (HSC–CO2) extraction at different temperatures, pressures, cosolvent percentages, and SC–CO2flow rates. The results indicated that these parameters significantly affected the extraction yield. The maximal yields of OA (0.917 mg/g of dry plant) and UA (3.540 mg/g of dry plant) were obtained at a dynamic extraction time of 110 min, a static extraction time of 15 min, 28.2 MPa, and 56°C with a 12.5% (v/v) cosolvent (ethanol/water = 82/18, v/v) and SC–CO2flowing at 2.3 mL/min (STP). The extracted yields were then analyzed by high performance liquid chromatography (HPLC) to quantify the OA and UA. The present findings revealed thatH. diffusais a potential source of OA and UA. In addition, using the hyphenated procedure for extraction is a promising and alternative process for recovering OA and UA fromH. diffusaat high concentrations.


2000 ◽  
Vol 629 ◽  
Author(s):  
Srinivas Siripurapu ◽  
Yvon J. Gay ◽  
Joseph R. Royer ◽  
Joseph M. DeSimone ◽  
Saad A. Khan ◽  
...  

ABSTRACTMicrocellular polymeric foams (MPFs) hold tremendous promise for engineering applications as substitutes to their solid analogs in light of reduced manufacturing/materials costs and improved properties. We present a two-part study addressing the generation of such materials in the presence of supercritical carbon dioxide (scCO2). The first part describes the production of polystyrene MPFs in a continuous extrusion process, as well as the effect of operating conditions such as temperature and CO2 concentration on foam morphology. The second part discusses microcellular foaming of poly (vinylidene fluoride) (PVDF), a semicrystalline polymer, via blending with the amorphous polymer poly (methyl methacrylate) PMMA. Foams of pure PVDF possess ill-defined morphologies, whereas those of PVDF-PMMA blends show an improvement with cell sizes on the order of 10 mm or less and cell densities in excess of 109 cells/cm3.


Author(s):  
Chang Hyeon Lim ◽  
Gokul Pathikonda ◽  
Sandeep Pidaparti ◽  
Devesh Ranjan

Abstract Supercritical carbon dioxide (sCO2) power cycles have the potential to offer a higher plant efficiency than the traditional Rankine superheated/supercritical steam cycle or Helium Brayton cycles. The most attractive characteristic of sCO2 is that the fluid density is high near the critical point, allowing compressors to consume less power than conventional gas Brayton cycles and maintain a smaller turbomachinery size. Despite these advantages, there still exist unsolved challenges in design and operation of sCO2 compressors near the critical point. Drastic changes in fluid properties near the critical point and the high compressibility of the fluid pose several challenges. Operating a sCO2 compressor near the critical point has potential to produce two phase flow, which can be detrimental to turbomachinery performance. To mimic the expanding regions of compressor blades, flow through a converging-diverging nozzle is investigated. Pressure profiles along the nozzle are recorded and presented for operating conditions near the critical point. Using high speed shadowgraph images, onset and growth of condensation is captured along the nozzle. Pressure profiles were calculated using a one-dimensional homogeneous equilibrium model and compared with experimental data.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Saeb M. Besarati ◽  
D. Yogi Goswami

A number of studies have been performed to assess the potential of using supercritical carbon dioxide (S-CO2) in closed-loop Brayton cycles for power generation. Different configurations have been examined among which recompression and partial cooling configurations have been found very promising, especially for concentrating solar power (CSP) applications. It has been demonstrated that the S-CO2 Brayton cycle using these configurations is capable of achieving more than 50% efficiency at operating conditions that could be achieved in central receiver tower type CSP systems. Although this efficiency is high, it might be further improved by considering an appropriate bottoming cycle utilizing waste heat from the top S-CO2 Brayton cycle. The organic Rankine cycle (ORC) is one alternative proposed for this purpose; however, its performance is substantially affected by the selection of the working fluid. In this paper, a simple S-CO2 Brayton cycle, a recompression S-CO2 Brayton cycle, and a partial cooling S-CO2 Brayton cycle are first simulated and compared with the available data in the literature. Then, an ORC is added to each configuration for utilizing the waste heat. Different working fluids are examined for the bottoming cycles and the operating conditions are optimized. The combined cycle efficiencies and turbine expansion ratios are compared to find the appropriate working fluids for each configuration. It is also shown that combined recompression-ORC cycle achieves higher efficiency compared with other configurations.


2021 ◽  
Vol 17 (6) ◽  
pp. 720-730
Author(s):  
Zuhaili Idham ◽  
Nicky Rahmana Putra ◽  
Hasmida Nasir ◽  
Lee Nian Yian ◽  
Nor Faadila Mohd Idrus ◽  
...  

This study aimed to evaluate the extraction yield, and anthocyanins content of Hibiscus sabdariffa L. calyces extract using different temperatures (T) at 50 - 70°C, pressure (P) at 8 - 12 MPa, and modifier ratio at 5 - 10%.  


Author(s):  
Ty W. Neises ◽  
Michael J. Wagner ◽  
Allison K. Gray

Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500–700°C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650°C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditional boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.


Author(s):  
B. Monge ◽  
D. Sánchez ◽  
M. Savill ◽  
P. Pilidis ◽  
T. Sánchez

The development of the supercritical Carbon Dioxide power cycle has relied on parallel tracks along which theoretical and experimental works have successfully complemented each other in the last few years. Following this approach, intensive work on the development of critical components has enabled the demonstration of the technology in small-scale test loops. The next step in the roadmap is scaling-up the technology in order to bridge the gap to commercialisation. To this aim, not only is it necessary to demonstrate that the cycle works, but it is also mandatory to rise component (and system) efficiencies to levels comparable with competing technologies. In this process, assessing the impact of the main design parameters on the efficiency of turbomachinery is deemed crucial. The present work is a follow-up to others presented by the authors in previous years where preliminary analysis on centrifugal compressor design combining tools of different levels of fidelity were used. Nevertheless, whilst these presented guidelines to design the main compressor successfully, this new piece of research presents how the design space of the unit is affected by the characteristics of the working fluid. A review of past research is first presented to evidence that the design space is largely influenced by the particular behaviour of the working fluid close to the critical point. Then, design maps are presented for different operating conditions (cycle heat balance), showing that their shapes change substantially depending on compressor inlet pressure and temperature. Also, a comparison of these maps confirms that the design regions enabling high efficiency can be substantially reduced depending on the inlet/outlet thermodynamic states. Finally, conclusions are drawn regarding optimal intervals for the main design parameters involved in the process.


Sign in / Sign up

Export Citation Format

Share Document