scholarly journals Selected amino acids uptake by microorganisms in soil of differently managed mountain meadows

Author(s):  
Valerie Vranová ◽  
Ladislav Holík ◽  
Michael Pöschl ◽  
Klement Rejšek ◽  
Pavel Formánek

This work was aimed at determination of the effect of 13 years abandonment of previously long-term mown mountain meadows on uptake of L-glutamic acid (14CO2H[14CH2]2[NH2]14CO2H) and L-alanine (14CH314CH[NH2]14CO2H) by microbial community of Ap horizon (3–13 cm). The study plots has been located near to the experimental stand “Bílý Kříž“ which is located in the Moravian-Silesian Beskids Mountains (N 49°30’17”, E 18°32’28”), on a slope with an elevation of 825–860 m a. s. l. and southeast orientation, and soil classified as an Oxyaquic Hapludalf. The study was performed to test method for measurement of 14C-labelled amino acids uptake by soil microbial community and to increase knowledge on particular processes of N-transformation in soil of these ecosystems. The results obtained in this work showed that 13 years abandonment of mountain meadow did not significantly (P > 0.05) influence rate of glutamic acid or alanine uptake by soil microbial community. Further research including determination of amino acids use by soil microbial biomass with expression of their partitioning between production of new microbial biomass and energy metabolism is necessary.

Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1166
Author(s):  
María José Carpio ◽  
Carlos García-Delgado ◽  
Jesús María Marín-Benito ◽  
María Jesús Sánchez-Martín ◽  
María Sonia Rodríguez-Cruz

The soil microbial activity, biomass and structure were evaluated in an unamended (S) and organically amended soil treated with two commercial formulations of the herbicides chlorotoluron (Erturon®) and flufenacet plus diflufenican (Herold®) under field conditions. Soils were amended with spent mushroom substrate (SMS) or green compost (GC). Soil microbial dehydrogenase activity (DHA), biomass and structure determined by the phospholipid fatty acid (PLFA) profiles were recorded at 0, 45, 145, 229 and 339 days after herbicide treatment. The soil DHA values steadily decreased over time in the unamended soil treated with the herbicides, while microbial activity was constant in the amended soils. The amended soils recorded higher values of concentrations of PLFAs. Total soil microbial biomass decreased over time regardless of the organic amendment or the herbicide. Herbicide application sharply decreased the microbial population, with a significant modification of the microbial structure in the unamended soil. In contrast, no significant differences in microbial biomass and structure were detected in S + SMS and S + GC, untreated or treated with herbicides. The application of SMS and GC led to a significant shift in the soil microbial community regardless of the herbicides. The use of SMS and GC as organic amendments had a certain buffer effect on soil DHA and microbial biomass and structure after herbicide application due to the higher adsorption capacity of herbicides by the amended soils.


2013 ◽  
Vol 43 (9) ◽  
pp. 777-784 ◽  
Author(s):  
Ya-Lin Hu ◽  
Kangho Jung ◽  
De-Hui Zeng ◽  
Scott X. Chang

Chronic nitrogen (N) and (or) sulfur (S) deposition to boreal forests in the Athabasca oil sands region (AOSR) in Alberta, Canada, has been caused by oil sands mining and extraction/upgrading activities. It is important that we understand the response of microbial community function to chronic N and S deposition as microbial populations mediate soil carbon (C) and N cycles and affect ecosystem resilience. To evaluate the impact of N and (or) S deposition on soil microbial community functions, we conducted a simulated N and S deposition experiment in a boreal mixedwood forest with the following four treatments: control (CK), N addition (+N, 30 kg N·ha−1 as NH4NO3), S addition (+S, 30 kg S·ha−1 as NaSO4), and N plus S addition (+NS, 30 kg N·ha−1 + 30 kg S·ha−1), from 2006 to 2010. Nitrogen and (or) S deposition did not change soil organic carbon, total N, dissolved organic C and N, or soil microbial biomass C and N. Soil microbial community-level physiological profiles, however, were strongly affected by 5 years of N and (or) S addition. Soil β-glucosidase activity in the +NS treatment was greater than that in the +S treatment, and S addition decreased soil arylsulfatase; however, urease and dehydrogenase activities were not affected by the simulated N and (or) S deposition. Our data suggested that N and (or) S deposition strongly affected soil microbial community functions and enzymatic activities without changing soil microbial biomass in the studied boreal forest.


Author(s):  
Huan He ◽  
Yixuan Liu ◽  
Yue Hu ◽  
Mengqi Zhang ◽  
Guodong Wang ◽  
...  

Increasing drought globally is a severe threat to fragile desert wetland ecosystem. It is of significance to study the effects of wetland drying on microbial regulation of soil carbon (C) in the desert. In this study, we examined the impacts of wetland drying on microbial biomass, microbial community (bacteria, fungi) and microbial activity [basal microbial respiration, microbial metabolic quotient (qCO2)]. Relationships of microbial properties with biotic factors [litter, soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP)], abiotic factors (soil moisture, pH and clay content) and biological processes (basal microbial respiration, qCO2) were also developed. Results showed that the drying of wetland led to a decrease of soil microbial biomass carbon (MBC) content, microbial biomass nitrogen (MBN) content and fungi and bacterial abundance, and an increase of the fungi:bacteria ratio. Wetland drying also led to increased soil basal respiration and increased qCO2, which was attributed to lower soil clay content and litter N concentration. The MBC:SOC ratios were higher under drier soil conditions than under virgin wetland, which was attributed to stronger C conserve ability of fungi than bacteria. The wetland drying process exacerbated soil C loss by strengthening heterotrophic respiration; however, the exact effects of soil microbial community structure on microbial C mineralization were not clear in this study and need further research.


2018 ◽  
Vol 10 (10) ◽  
pp. 3549 ◽  
Author(s):  
Kamila Orlewska ◽  
Anna Markowicz ◽  
Zofia Piotrowska-Seget ◽  
Joanna Smoleń-Dzirba ◽  
Mariusz Cycoń

Cefuroxime (XM), the most commonly prescribed antibiotic from the cephalosporin group, may cause changes in the structure of the soil microbial community, and these changes may also be reflected in the alteration of its functionality. Therefore, due to the lack of studies on this topic, the scope of this study was to assess the functional diversity and catabolic activity of the microbial community in soil treated with XM (1 mg/kg and 10 mg/kg soil) using the community-level physiological profile (CLPP) approach during a 90-day experiment. In addition, the effect of antibiotic-resistant Pseudomonas putida strain MC1 (Ps) was also evaluated. The resistance/resilience concept and multifactorial analysis were used to interpret the data. The results showed that the introduction of XM and/or Ps into the soil caused changes in the catabolic activity and functional diversity of the microbial community. A decrease in the values of the CLPP indices (i.e., microbial activity expressed as the average well-color development (AWCD), substrate richness (R), the Shannon-Wiener (H) and evenness (E) indices and the AWCD values for the six carbon substrate groups) for the XM-treated soil was generally detected up to 30 days. In turn, at the same time, the activity measured in the Ps-inoculated soil was higher compared to the control soil. A stimulatory effect of XM at 10 mg/kg (XM10) and XM10+Ps on the utilization pattern of each substrate group was found at the following sampling times (days 60 and 90). The AWCD values for the utilization of amines, amino acids, carbohydrates, carboxylic acids, miscellaneous compounds and polymers for these treatments were found to be up to 2.3-, 3.1-, 2.3-, 13-, 3.4- and 3.3-fold higher compared to the values for the nontreated control, respectively. The resistance of the CLPP indices and the AWCD values for the carbon substrate groups were categorized as follows: E > H > R > AWCD and amino acids = carbohydrates > polymers > amines > miscellaneous > carboxylic acids, respectively. The results suggest a low initial resistance of the soil microbial community to XM and/or Ps, and despite the short-term negative effect, the balance of the soil ecosystem may be disturbed.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1848
Author(s):  
Aggeliki Ainalidou ◽  
Foteini Bouzoukla ◽  
Urania Menkissoglu-Spiroudi ◽  
Despoina Vokou ◽  
Katerina Karamanoli

This study provides insight into changes in the features of tomato seedlings growing in soils enriched with spearmint, peppermint, or rosemary leaves and into changes in the microbial communities of these soils used as seedbeds; an organic amendment was also applied as a positive control. While the soil microbial community flourished in the presence of all three aromatic plants, tomato growth was inhibited or stimulated depending on the plant that was used. More specifically, phospholipid fatty acid (PLFA) analysis showed an increase in the total microbial biomass and in the biomass of all the groups examined, except for actinobacteria, and changes in the microbial community structure, with Gram-negative bacteria and fungi being favoured in the mint treatments, in which the microbial biomass was maximized. Seedlings from the rosemary treatment were entirely inhibited; they were at the open-cotyledon stage throughout the experiment. Seedlings from the mint treatments were the heaviest, longest, and had the highest chlorophyll content and photosynthetic yield. Metabolomic analysis showed metabolism enhancement associated with both growth and priming in seedlings from the mint treatments and disruption of metabolic pathways in those from the rosemary treatment. There is a great potential for applying these aromatic plants as soil amendments and as either biostimulants of plant growth or as herbicides.


2018 ◽  
Vol 6 (4) ◽  
pp. 49
Author(s):  
Solomon A. Adejoro ◽  
Ajoke C. Adegaye ◽  
Doyinsola S. Sonoiki

The toxicity of nicosulfuron to none target organisms is its downside, which has generated concerns about the herbicide in spite of its high herbicidal activity. Practices that would facilitate accelerated degradation of this herbicide will certainly be complementary to its use. A completely randomized design laboratory incubation experiment was carried out to examine the potentials of organic and mineral fertilizers to stimulate microbial activities in soil under the influence of the nicosulfuron herbicide. Soil contaminated with the field rate of nicosulfuron was separately amended with compost and NPK mineral fertilizer, and the treated samples were incubated for 56 days at room temperature. Soil microbial activity and microbial biomass C were measured in dynamics for the period of incubation. Eco-physiological quotients were also computed at the end of incubation to determine responses of soil microbes at the community level to the treatments. Application of nicosulfuron alone was found to repress both microbial biomass and microbial activity. Addition of fertilizer however caused these parameters to increase especially during the first 28 days after treatment application. The microbial metabolic quotient was raised by the soil amendments shortly after application with the exemption of NPK treated soil. However, only the soil samples in which compost was present lowered qCO2 at the termination of the experiment. NIC-COMP and NIC-NPK respectively raised and lowered the soil carbon mineralization quotient (qM) measured at the end of incubation. The soil microbial community was also found to be positively affected by the addition of fertilizers as indicated by the Cmic: Corg ratio and the microbial biomass change rate quotient (qC). It was therefore concluded that though the nicosulfuron herbicide at the field recommended rate has potentials to negatively affect the soil microbial community, application of organic fertilizer may help the soil to regain its microbial competence through enhanced degradation engendered by biostimulation of native microorganisms.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Rémy Beugnon ◽  
Jianqing Du ◽  
Simone Cesarz ◽  
Stephanie D. Jurburg ◽  
Zhe Pang ◽  
...  

AbstractMicrobial respiration is critical for soil carbon balance and ecosystem functioning. Previous studies suggest that plant diversity influences soil microbial communities and their respiration. Yet, the linkages between tree diversity, microbial biomass, microbial diversity, and microbial functioning have rarely been explored. In this study, we measured two microbial functions (microbial physiological potential, and microbial respiration), together with microbial biomass, microbial taxonomic and functional profiles, and soil chemical properties in a tree diversity experiment in South China, to disentangle how tree diversity affects microbial respiration through the modifications of the microbial community. Our analyses show a significant positive effect of tree diversity on microbial biomass (+25% from monocultures to 24-species plots), bacterial diversity (+12%), and physiological potential (+12%). In addition, microbial biomass and physiological potential, but not microbial diversity, were identified as the key drivers of microbial respiration. Although soil chemical properties strongly modulated soil microbial community, tree diversity increased soil microbial respiration by increasing microbial biomass rather than changing microbial taxonomic or functional diversity. Overall, our findings suggest a prevalence of microbial biomass over diversity in controlling soil carbon dynamics.


Sign in / Sign up

Export Citation Format

Share Document