scholarly journals Surface Characterization of Electric Discharge Machined Surface of High Speed Steel

Author(s):  
K Tamil Mannan ◽  
◽  
Arkanti Krishnaiah ◽  
Siva Prasad Arikatla
2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Michael R. Lovell ◽  
P. Cohen ◽  
Pradeep L. Menezes ◽  
R. Shankar

When machining miniaturized components, the contact conditions between the tool and the workpiece exhibit very small contact areas that are on the order of 10−5 mm2. Under these conditions, extremely high contact stresses are generated, and it is not clear whether macroscopic theories for the chip formation, cutting forces, and friction mechanisms are applicable. For this reason, the present investigation has focused on creating a basic understanding of the frictional behavior in very small scale machining processes so that evaluations of standard macroscale models could be performed. Specialized machining experiments were conducted on 70/30 brass materials using high-speed steel tools over a range of speeds, feeds, depths of cut, and tool rake angles. At each operating condition studied, the friction coefficient and the shear factor τk were obtained. Based on the experimental results, it was determined that the standard macroscopic theory for analyzing detailed friction mechanisms was insufficient in very small scale machining processes. An approach that utilized the shear factor, in contrast, was found to be better for decoupling the physical phenomena involved. Utilizing the shear factor as an analysis parameter, the parameters that significantly influence the friction in microscale machining processes were ascertained and discussed.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3830
Author(s):  
Tomasz Bartkowiak ◽  
Michał Mendak ◽  
Krzysztof Mrozek ◽  
Michał Wieczorowski

The objective of this work is to study the geometric properties of surface topographies of hot-work tool steel created by electric discharge machining (EDM) using motif and multiscale analysis. The richness of these analyses is tested through calculating the strengths of the correlations between discharge energies and resulting surface characterization parameters, focusing on the most representative surface features—craters, and how they change with scale. Surfaces were created by EDM using estimated energies from 150 to 9468 µJ and measured by focus variation microscope. The measured topographies consist of overlapping microcraters, of which the geometry was characterized using three different analysis: conventional with ISO parameters, and motif and multiscale curvature tensor analysis. Motif analysis uses watershed segmentation which allows extraction and geometrically characterization of each crater. Curvature tensor analysis focuses on the characterization of principal curvatures and their function and their evolution with scale. Strong correlations (R2 > 0.9) were observed between craters height, diameter, area and curvature using linear and logarithmic regressions. Conventional areal parameter related to heights dispersion were found to correlate stronger using logarithmic regression. Geometric characterization of process-specific topographic formations is considered to be a natural and intuitive way of analyzing the complexity of studied surfaces. The presented approach allows extraction of information directly relating to the shape and size of topographic features of interest. In the tested conditions, the surface finish is mostly affected and potentially controlled by discharge energy at larger scales which is associated with sizes of fabricated craters.


2010 ◽  
Vol 25 (6) ◽  
pp. 1164-1171 ◽  
Author(s):  
A. Schlieter ◽  
U. Kühn ◽  
J. Eckert ◽  
H-J. Seifert

Systematic microstructural and mechanical investigations of the Fe84.3Cr4.3Mo4.6V2.2C4.6 alloy cast under special manufacturing conditions in the as-cast state and after specific heat treatment are presented to point out that the special manufacturing of the alloy led to high compression strength (up to 4680 MPa) combined with large fracture strain (about 20%) already in the as-cast state. One select chemical composition of the alloy, which was mentioned previously [Kühn et al., Appl. Phys. Lett.90, 261901 (2007)] enhanced mechanical properties already in the as-cast state. Furthermore, that composition is comparable to commercial high-speed steel. By the special manufacturing used, a high purity of elements and a high cooling rate, which led to a microstructure similar to a composite-like material, composed of dendritic area (martensite, bainite, and ferrite) and interdendritic area (e.g., complex carbides). The presented article demonstrates an alloy that exhibits already in the as-cast state high fracture strength and large ductility. Furthermore, these outstanding mechanical properties remain unchanged after heating up to 873 K.


2008 ◽  
Vol 375-376 ◽  
pp. 221-225
Author(s):  
Yan Li Tang ◽  
Rong Di Han ◽  
Jia Bin Ju

Based on the theoretical principle of tapping formation and simulation with modified-tooth tap, the relationship among the different geometric parameters of the tap was further analyzed. A series of modified-tooth taps and standard ones with a cutting cone angle of 7°30´and a outer diameter of M6, which were made from high-speed steel W9, were taken to do the comparative tapping test on nickel-based high-temperature alloy GH4169, titanium alloy TC4 and 45 steel. The test results indicated that the leading cause of difficult tapping in GH4169 and TC4 was the largeness of their friction torques which were about 35 % and 62 % of tapping torque respectively, where the frictional wear was a fundamental reason for tough tapping GH4169 and the spring back of machined surface for TC4.The obvious decreases of friction torque with the modified-tooth tap approximately 70% and 50% respectively for GH4169 and TC4 were attributed to its unique tapping formation principle of generating broaching but no remarkable effects on 45 steel in comparison with standard tap.


Author(s):  
Deniz Ugur ◽  
Ihsan Efeoglu ◽  
Sabri Altintas

In this research, structural, tribological and mechanical characterization of Nb and Ti doped diamond like carbon (DLC) films was carried out. Films were grown on M2 high speed steel (HSS), glass and silicon wafer substrates by pulsed DC physical vapor deposition – closed field unbalanced magnetron sputtering (PVD-CFUBMS) method. Structural characterization of the coatings was done by using Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS) tests. Tribological characterization was completed by conducting pin on disk tests, scratch tests and surface profilometry analyses on wear scars. Hardness measurements were done with nanoindentation tests. It was noted that there existed excellent adhesion between the coating and the substrate, which is evidenced by the high critical loads reached in scratch tests.


2008 ◽  
Vol 600-603 ◽  
pp. 855-858 ◽  
Author(s):  
Tomohisa Kato ◽  
Toshiya Noro ◽  
Hideaki Takahashi ◽  
Satarou Yamaguchi ◽  
Kazuo Arai

In this study, we report electric discharge machining (EDM) as a new cutting method for silicon carbide (SiC) single crystals. Moreover, we discuss characteristics and usefulness of the EDM for the SiC. The EDM realized not only high speed and smooth cutting but also lower surface damage. Defect propagation in the EDM SiCs have been also estimated by etch pits observation using molten KOH, however, we confirmed the EDM has caused no damage inside the SiCs in spite of high voltage and high temperature during the machining.


Respuestas ◽  
2016 ◽  
Vol 21 (2) ◽  
pp. 103
Author(s):  
Jesús David Villarreal-López ◽  
William Arnulfo Aperador-Chaparro ◽  
Jairo Rafael Cortes-Lizarazo

Mediante la técnica de deposición física fase vapor (PVD) usando el método por magnetrón sputtering, se logró el recubrimiento en forma de monocapas de nitruro de vanadio sobre herramientas de acero rápido ASSAB 17® usados para el mecanizado por arranque de viruta en probetas de acero UNS G1020 para operaciones de cilindrado. Se realizaron cambios progresivos en los parámetros de corte tomando datos de temperatura sobre la herramienta, la probeta y el material removido para su posterior análisis y comparación con los datos obtenidos del mismo proceso realizado con herramientas sin ningún recubrimiento. Subsiguientemente se hizo la caracterización morfológica del recubrimiento mediante microscopio electrónico de barrido a las herramientas de corte. Se cuantificó la rugosidad de cada pobreta, característica fundamental para observar el aumento de la vida útil de la herramienta de corte y la reducción en los tiempos y costos de producción. Los resultados fueron contundentes, justificados en el incremento del desempeño en el arranque de material, mejor transferencia energética en el corte superior acabado superficial en las probetas.Palabras clave: Herramienta, mecanizado, vida útil.AbstractUsing the physical vapor deposition (PVD) technique with magnetron sputtering, we achieved monolayer-coating with vanadium nitride on ASSAB 17TM high speed steel tools used for machining UNS G1020 steal probes in turning operations by chip removal. We performed progressive changes in the cutting parameters, recording data related to temperature of the cutting tool, the graduated cylinder and the removed material for later analysis and comparison with similar data from the process performed with non-coated tools. Subsequently the morphologic characterization of the coating was carried out using scan electron microscope on the cutting tools. Graduate cylinder roughness was quantified to observe the lifetime extension and reduction of production cost reduction derived from the use of coated tools. The results were conclusive, justified in the increased performance in material removal, enhanced energetic transfer during cut and improved surface finished in the probes.Keywords: tool, machining; useful life.


Sign in / Sign up

Export Citation Format

Share Document