scholarly journals Uma revisão: contribuições dos modos de gravidade e de Kelvin para a resposta do movimento vertical

2009 ◽  
Vol 32 (2) ◽  
pp. 9-13
Author(s):  
Julio Buchmann

In earlier papers of a series of real data integrations of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM) with tropical heat anomalies display regions of pronounced subsidence and drying located several thousand kilometers westward poleward of the heating for cases of tropical Atlantic heating and tropical east Pacific heating. This highly predictable sinking response is established within the first five days of these integrations. The normal-modes of a set of nonlinear primitive equations for an atmosphere: Adiabatic, hydrostatic, incompressible, dry, without friction and viscosity are linearized about a basic state at rest and used to partition model response into gravity-inertia and Rossby modes. The emphasis of this review is given upon the contributions of the gravity and Kelvin modes for the vertical motion response.

2008 ◽  
Vol 31 (2) ◽  
pp. 50-52
Author(s):  
Julio Buchmann

In earlier papers of a series of real data integrations of the National Center for Atmospheric Research Community Climate Model with tropical heat anomalies display regions of pronounced subsidence and drying located several thousand kilometers westward poleward of the heating for cases of tropical Atlantic heating and tropical east Pacific heating. This highly predictable sinking response is established within the first five days of these integrations. The normal-modes of a set of adiabatic primitive equations linearized about a basic state at rest are used to partition model response into gravity-inertia and Rossby modes. The most important contribution for the vertical motion response comes from the gravity modes added for all vertical modes. The principal emphasis is given upon the contributions of the second and third internal vertical modes (with equivalent depths on the order of a fews hundred meters) for the vertical motion response


2005 ◽  
Vol 5 (4) ◽  
pp. 1125-1156 ◽  
Author(s):  
P. Stier ◽  
J. Feichter ◽  
S. Kinne ◽  
S. Kloster ◽  
E. Vignati ◽  
...  

Abstract. The aerosol-climate modelling system ECHAM5-HAM is introduced. It is based on a flexible microphysical approach and, as the number of externally imposed parameters is minimised, allows the application in a wide range of climate regimes. ECHAM5-HAM predicts the evolution of an ensemble of microphysically interacting internally- and externally-mixed aerosol populations as well as their size-distribution and composition. The size-distribution is represented by a superposition of log-normal modes. In the current setup, the major global aerosol compounds sulfate (SU), black carbon (BC), particulate organic matter (POM), sea salt (SS), and mineral dust (DU) are included. The simulated global annual mean aerosol burdens (lifetimes) for the year 2000 are for SU: 0.80 Tg(S) (3.9 days), for BC: 0.11 Tg (5.4 days), for POM: 0.99 Tg (5.4 days), for SS: 10.5 Tg (0.8 days), and for DU: 8.28 Tg (4.6 days). An extensive evaluation with in-situ and remote sensing measurements underscores that the model results are generally in good agreement with observations of the global aerosol system. The simulated global annual mean aerosol optical depth (AOD) is with 0.14 in excellent agreement with an estimate derived from AERONET measurements (0.14) and a composite derived from MODIS-MISR satellite retrievals (0.16). Regionally, the deviations are not negligible. However, the main patterns of AOD attributable to anthropogenic activity are reproduced.


1994 ◽  
Vol 99 (D10) ◽  
pp. 20785 ◽  
Author(s):  
J. J. Hack ◽  
B. A. Boville ◽  
J. T. Kiehl ◽  
P. J. Rasch ◽  
D. L. Williamson

2021 ◽  
Author(s):  
Ulrike Proske ◽  
Sylvaine Ferrachat ◽  
David Neubauer ◽  
Ulrike Lohmann

<p>Clouds are of major importance for the climate system, but the radiative forcing resulting from their interaction with aerosols remains uncertain. To improve the representation of clouds in climate models, the parameterisations of cloud microphysical processes (CMPs) have become increasingly detailed. However, more detailed climate models do not necessarily result in improved accuracy for estimates of radiative forcing (Knutti and Sedláček, 2013; Carslaw et al., 2018). On the contrary, simpler formulations are cheaper, sufficient for some applications, and allow for an easier understanding of the respective process' effect in the model.</p><p>This study aims to gain an understanding which CMP parameterisation complexity is sufficient through simplification. We gradually phase out processes such as riming or aggregation from the global climate model ECHAM-HAM, meaning that the processes are only allowed to exhibit a fraction of their effect on the model state. The shape of the model response as a function of the artificially scaled effect of a given process helps to understand the importance of this process for the model response and its potential for simplification. For example, if partially removing a process induces only minor alterations in the present day climate, this process presents as a good candidate for simplification. This may be then further investigated, for example in terms of computing time.<br>The resulting sensitivities to CMP complexity are envisioned to guide CMP model simplifications as well as steer research towards those processes where a more accurate representation proves to be necessary.</p><p> </p><p><br>Carslaw, Kenneth, Lindsay Lee, Leighton Regayre, and Jill Johnson (Feb. 2018). “Climate Models Are Uncertain, but We Can Do Something About It”. In: Eos 99. doi: 10.1029/2018EO093757</p><p>Knutti, Reto and Jan Sedláček (Apr. 2013). “Robustness and Uncertainties in the New CMIP5 Climate Model Projections”. In: Nature Climate Change 3.4, pp. 369–373. doi: 10.1038/nclimate1716</p>


2020 ◽  
Vol 33 (6) ◽  
pp. 2427-2447 ◽  
Author(s):  
Nathaniel C. Johnson ◽  
Lakshmi Krishnamurthy ◽  
Andrew T. Wittenberg ◽  
Baoqiang Xiang ◽  
Gabriel A. Vecchi ◽  
...  

AbstractPositive precipitation biases over western North America have remained a pervasive problem in the current generation of coupled global climate models. These biases are substantially reduced, however, in a version of the Geophysical Fluid Dynamics Laboratory Forecast-Oriented Low Ocean Resolution (FLOR) coupled climate model with systematic sea surface temperature (SST) biases artificially corrected through flux adjustment. This study examines how the SST biases in the Atlantic and Pacific Oceans contribute to the North American precipitation biases. Experiments with the FLOR model in which SST biases are removed in the Atlantic and Pacific are carried out to determine the contribution of SST errors in each basin to precipitation statistics over North America. Tropical and North Pacific SST biases have a strong impact on northern North American precipitation, while tropical Atlantic SST biases have a dominant impact on precipitation biases in southern North America, including the western United States. Most notably, negative SST biases in the tropical Atlantic in boreal winter induce an anomalously strong Aleutian low and a southward bias in the North Pacific storm track. In boreal summer, the negative SST biases induce a strengthened North Atlantic subtropical high and Great Plains low-level jet. Each of these impacts contributes to positive annual mean precipitation biases over western North America. Both North Pacific and North Atlantic SST biases induce SST biases in remote basins through dynamical pathways, so a complete attribution of the effects of SST biases on precipitation must account for both the local and remote impacts.


2020 ◽  
Vol 117 (16) ◽  
pp. 8757-8763 ◽  
Author(s):  
Ji Nie ◽  
Panxi Dai ◽  
Adam H. Sobel

Responses of extreme precipitation to global warming are of great importance to society and ecosystems. Although observations and climate projections indicate a general intensification of extreme precipitation with warming on global scale, there are significant variations on the regional scale, mainly due to changes in the vertical motion associated with extreme precipitation. Here, we apply quasigeostrophic diagnostics on climate-model simulations to understand the changes in vertical motion, quantifying the roles of dry (large-scale adiabatic flow) and moist (small-scale convection) dynamics in shaping the regional patterns of extreme precipitation sensitivity (EPS). The dry component weakens in the subtropics but strengthens in the middle and high latitudes; the moist component accounts for the positive centers of EPS in the low latitudes and also contributes to the negative centers in the subtropics. A theoretical model depicts a nonlinear relationship between the diabatic heating feedback (α) and precipitable water, indicating high sensitivity of α (thus, EPS) over climatological moist regions. The model also captures the change of α due to competing effects of increases in precipitable water and dry static stability under global warming. Thus, the dry/moist decomposition provides a quantitive and intuitive explanation of the main regional features of EPS.


2007 ◽  
Vol 30 (4) ◽  
pp. 391-406 ◽  
Author(s):  
Benjamin I. Cook ◽  
Gordon B. Bonan ◽  
Samuel Levis ◽  
Howard E. Epstein

2020 ◽  
Vol 33 (2) ◽  
pp. 691-706 ◽  
Author(s):  
Xiaojuan Liu ◽  
David S. Battisti ◽  
Rachel H. White ◽  
Paul A. Baker

AbstractThe Cenozoic climate of tropical South America was fundamental to the development of its biota, the most biodiverse on Earth. No previous studies have explicitly addressed how the very different atmospheric composition and Atlantic geometry during the early Eocene (approximately 55 million years ago) may have affected South American climate. At that time, the Atlantic Ocean was approximately half of its current width and the CO2 concentration of Earth’s atmosphere ranged from ~550 to ~1500 ppm or even higher. Climate model simulations were performed to examine the effects of these major state changes on the climate of tropical South America. Reducing the width of the Atlantic by approximately half produces significant drying relative to modern climate. Drying is only partly offset by an enhancement of precipitation due to the higher CO2 of the early Eocene. The main mechanism for drier conditions is simple. Low-level air crosses the tropical Atlantic from North Africa in much less time for a narrower Atlantic (2 days) than for the modern Atlantic (~6 days); as a result, much less water is evaporated into the air and thus there is far lower moisture imported to the continent in the Eocene simulation than in the modern control. The progressive wetting (during the mid- to late Cenozoic) of the Amazon due to the widening Atlantic and the rising Andes, only partly offset by decreasing CO2 values, may have been partly responsible for the accumulating biodiversity of this region.


Sign in / Sign up

Export Citation Format

Share Document