Radiation-induced neurocognitive deficits in patients with brain metastases

Author(s):  
Fabio Trippa
2021 ◽  
Vol 22 (14) ◽  
pp. 7713
Author(s):  
Alyssa Tidmore ◽  
Sucharita M. Dutta ◽  
Arriyam S. Fesshaye ◽  
William K. Russell ◽  
Vania D. Duncan ◽  
...  

Exposure of rodents to <20 cGy Space Radiation (SR) impairs performance in several hippocampus-dependent cognitive tasks, including spatial memory. However, there is considerable inter-individual susceptibility to develop SR-induced spatial memory impairment. In this study, a robust label-free mass spectrometry (MS)-based unbiased proteomic profiling approach was used to characterize the composition of the hippocampal proteome in adult male Wistar rats exposed to 15 cGy of 1 GeV/n 48Ti and their sham counterparts. Unique protein signatures were identified in the hippocampal proteome of: (1) sham rats, (2) Ti-exposed rats, (3) Ti-exposed rats that had sham-like spatial memory performance, and (4) Ti-exposed rats that impaired spatial memory performance. Approximately 14% (159) of the proteins detected in hippocampal proteome of sham rats were not detected in the Ti-exposed rats. We explored the possibility that the loss of the Sham-only proteins may arise as a result of SR-induced changes in protein homeostasis. SR-exposure was associated with a switch towards increased pro-ubiquitination proteins from that seen in Sham. These data suggest that the role of the ubiquitin-proteome system as a determinant of SR-induced neurocognitive deficits needs to be more thoroughly investigated.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i22-i22
Author(s):  
Jin Wook Kim ◽  
Kawngwoo Park

Abstract PURPOSE: To evaluate the efficacy of Gamma Knife radiosurgery (GKS) in patients with large brain metastases by comparing single-session radiosurgery (S-GKS) and multisession radiosurgery (M-GKS), the authors retrospectively analyzed the clinical outcomes of the patients who underwent GKS for brain metastases from non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: Between January 2010 and December 2016, 66 patients with 74 lesions &gt;=10 cm3 from large brain metastases from only NSCLC were included. Fifty-five patients with 60 lesions were treated with S-GKS; 11 patients with 14 lesions were treated with M-GKS. Median doses were 16 Gy (range, 11–18 Gy) for the S-GKS group and 8 Gy (range, 7–10 Gy) in three fractions for the M-GKS group. RESULTS: With a mean follow-up period of 13.1 months (range, 1.3–76.4 months), the median survival duration was 21.1 months for all patients. Median tumor volume was 14.3 cm3 (range, 10.0–58.3). The local control rate was 77.0% and the progression-free survival rate was 73.6% at the last follow-up. There were no significant between-group differences in terms of local control rate (p = 0.10). Compared with S-GKS, M-GKS did not differ significantly in radiation-induced complications (38.1% versus 45.4%, p = 0.83). While eight patients who underwent S-GKS experienced major complications of grade &gt;=3, no toxicity was observed in patients treated with M-GKS. CONCLUSIONS: M-GKS may be an effective alternative for large brain metastases from NSCLC. Specifically, severe radiation-induced toxicity (≥ grade 3) did not occur in M-GKS for large-volume metastases. Although the long-term effects and results from larger samples remain unclear, M-GKS may be a suitable palliative treatment to preserve neurological function.


2006 ◽  
Vol 23 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Mikhail F. Chernov ◽  
Motohiro Hayashi ◽  
Masahiro Izawa ◽  
Masao Usukura ◽  
Shimetoshi Yoshida ◽  
...  

Life ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 41 ◽  
Author(s):  
Konstantin N. Loganovsky ◽  
Donatella Marazziti ◽  
Pavlo A. Fedirko ◽  
Kostiantyn V. Kuts ◽  
Katerina Y. Antypchuk ◽  
...  

Exposure to ionizing radiation (IR) could affect the human brain and eyes leading to both cognitive and visual impairments. The aim of this paper was to review and analyze the current literature, and to comment on the ensuing findings in the light of our personal contributions in this field. The review was carried out according to the PRISMA guidelines by searching PubMed, Scopus, Embase, PsycINFO and Google Scholar English papers published from January 2000 to January 2020. The results showed that prenatally or childhood-exposed individuals are a particular target group with a higher risk for possible radiation effects and neurodegenerative diseases. In adulthood and medical/interventional radiologists, the most frequent IR-induced ophthalmic effects include cataracts, glaucoma, optic neuropathy, retinopathy and angiopathy, sometimes associated with specific neurocognitive deficits. According to available information that eye alterations may induce or may be associated with brain dysfunctions and vice versa, we propose to label this relationship “eye-brain axis”, as well as to deepen the diagnosis of eye pathologies as early and easily obtainable markers of possible low dose IR-induced brain damage.


Author(s):  
María J Contreras-Zárate ◽  
Steven Lai ◽  
Priscilla Stumpf ◽  
Christine Fisher ◽  
Ryan Ormond ◽  
...  

2005 ◽  
Vol 91 (4) ◽  
pp. 325-330 ◽  
Author(s):  
Ernesto Maranzano ◽  
Fabio Trippa ◽  
Diamante Pacchiarini ◽  
Luigia Chirico ◽  
Maria Luisa Basagni ◽  
...  

The recent improvements of therapeutic approaches in oncology have allowed a certain number of patients with advanced disease to survive much longer than in the past. So, the number of cases with brain metastases and metastatic spinal cord compression has increased, as has the possibility of developing a recurrence in areas of the central nervous system already treated with radiotherapy. Clinicians are reluctant to perform re-irradiation of the brain, because of the risk of severe side effects. The tolerance dose for the brain to a single course of radiotherapy is 50–60 Gy in 2 Gy daily fractions. New metastases appear in 22–73% of the cases after whole brain radiotherapy, but the percentage of re-irradiated patients is 3–10%. An accurate selection must be made before giving an indication to re-irradiation. Patients with Karnofsky performance status >70, age <65 years, controlled primary and no extracranial metastases are those with the best prognosis. The absence of extracranial disease was the most significant factor in conditioning survival, and maximum tumor diameter was the only variable associated with an increased risk of unacceptable acute and/or chronic neurotoxicity. Re-treatment of brain metastases can be done with whole brain radiotherapy, stereotactic radiosurgery or fractionated stereotactic radiotherapy. Most patients had no relevant radiation-induced toxicity after a second course of whole brain radiotherapy or stereotactic radiosurgery. There are few data on fractionated stereotactic radiotherapy in the re-irradiation of brain metastases. In general, the incidence of an “in-field” recurrence of spinal metastasis varies from 2.5–11% of cases and can occur 2–40 months after the first radiotherapy cycle. Radiation-induced myelopathy can occur months or years (6 months-7 years) after radiotherapy, and the pathogenesis remains obscure. Higher radiotherapy doses, larger doses per fraction, and previous exposure to radiation could be associated with a higher probability of developing radiation-induced myelopathy. Experimental data indicate that also the total dose of the first and second radiotherapy, interval to re-treatment, length of the irradiated spinal cord, and age of the treated animals influence the risk of radiation-induced myelopathy. An α/β ratio of 1.9–3 Gy could be generally the reference value for fractionated radiotherapy. However, when fraction sizes are up to 5 Gy, the linear-quadratic equation become a less valid model. The early diagnosis of relapse is crucial in conditioning response to re-treatment.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Deepak Khuntia

Brain metastases are an important cause of morbidity and mortality, afflicting approximately 200,000 Americans annually. The prognosis for these patients is poor, with median survivals typically measured in months. In this review article, we present the standard treatment approaches with whole brain radiation and as well as novel approaches in the prevention of neurocognitive deficits.


Sign in / Sign up

Export Citation Format

Share Document