scholarly journals Bioinoculant production composed by Pseudomonas sp., Serratia sp., and Kosakonia sp., preliminary effect on Allium cepa L., growth at plot scale

2021 ◽  
Vol 26 (1) ◽  
pp. 79-118
Author(s):  
Andrea Blanco-Vargas ◽  
Lina M Rodríguez-Gacha ◽  
Natalia Sánchez-Castro ◽  
Laura Herrera-Carlosama ◽  
Raúl A. Poutou-Piñales ◽  
...  

Phosphorus (P) is an essential nutrient for plant’s development, and its deficiency restricts crop yield. To meet P requirements in agricultural settings, a low-cost culture medium (MT11B) was designed in which a bioinoculant was produced consisting of three bacterial isolates capable of solubilizing P from phosphoric rock (PR). Pseudomonas sp., Serratia sp., and Kosakonia sp. exhibited P solubilization in SMRS1 agar modified with PR (5.0 g L-1), as source of inorganic P. Sowings by isolation were made of the three bacteria on DNAse- and Blood-agar to rule out pathogenicity. At the interaction tests, no inhibition halos were observed; demonstrating there was no antagonism among them, thus they were used to constitute a consortium. Growth curve (12 h) in MT11B demonstrated consortium grew in presence of PR, brewer’s yeast hydrolysate, and glucose at concentrations (2.5 g L-1) fourfold lower than those in SMRS1 (10.0 g L-1); obtaining phosphate solubilizing bacteria of (10.60 ± 0.08/ log10 CFUmL-1 and, at 6 h of culture, acid and alkaline phosphatase enzyme volumetric activities of 2.3 ± 0.8 and (3.80 ± 0.13) UP, respectively. The consortium, releasing phosphorus at a rate of (45.80 ± 5.17) mg L-1 at 6 h of production, was evaluated as bioinoculant in onion plots for five months. Plants receiving a treatment that included 500 mL (10 x 107 CFU mL-1) of bioinoculant plus 100 kg ha-1 of an organic mineral fertilizer exhibited the highest determined response variables (170.1 ± 22.2) mm bulb height, (49.4 ± 6.5) mm bulb diameter, (9.0 ± 1.8) g bulb dry weight, and 15.21 mg bulb-1 total phosphorus (p < 0.05).

2017 ◽  
Vol 66 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Jian Zhang ◽  
Peng Cheng Wang ◽  
Ling Fang ◽  
Qi-An Zhang ◽  
Cong Sheng Yan ◽  
...  

Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.


Author(s):  
Rajiv Pathak ◽  
Vipassana Paudel ◽  
Anupama Shrestha ◽  
Janardan Lamichhane ◽  
Dhurva. P. Gauchan

Phosphorous (P) is an essential macronutrient and most soils contain high levels of P. However, its availability to plant is limited by rapid immobilization of phosphorous compounds to insoluble forms and hence plant available forms of P in soils are found in low amounts. Phosphate solubilizing bacteria provide an eco-friendly alternative to convert insoluble phosphates into plant available forms. In the present study, three phosphate solubilizing bacterial isolates (PB-1, PB-4 and VC-01) with visually significant phosphate solubilizing abilities were isolated from tomato rhizosphere soil. In-vitro study in pikovskaya’s agar revealed that isolate PB-1 had the highest phosphate solubilizing ability with a phosphate solubilizing index of 2.08±0.07 followed by isolate VC-01 (1.31±0.09) and PB-4 (1.24±0.08). Isolates were used as bacterial inoculum to assess their ability to promote tomato (Lycopersicon esculentum var. Srijana) seedling and plant growth in in-vitro and greenhouse experiment respectively. Isolate PB-4 showed best growth promotion in seedling assay whereas isolate PB-1 and VC-01 also promoted seedling growth compared to control. In greenhouse experiment however, isolates VC-01 and PB-1 significantly enhanced all parameters (shoot length, root length, shoot and root dry weight) compared to uninoculated control whereas isolate PB-4 had a positive effect on all parameters except root length.Kathmandu University Journal of Science, Engineering and TechnologyVol. 13, No. 2, 2017, page: 61-70


Heliyon ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. e05218
Author(s):  
Andrea Blanco-Vargas ◽  
Lina M. Rodríguez-Gacha ◽  
Natalia Sánchez-Castro ◽  
Rafael Garzón-Jaramillo ◽  
Lucas D. Pedroza-Camacho ◽  
...  

2018 ◽  
Vol 45 (3) ◽  
pp. 255
Author(s):  
Pitri Ratna Asih ◽  
Memen Surahman ◽  
Dan Giyanto

Increased productivity of maize can be done with the use of high quality seeds from improved varieties such as hybrid seed. The objectives of this study were Increasing productivity of maize female parent is important in order to reduce the price of hybrid seed. The objectives of this study were to determine the nitrogen fixing bacteria compatible with phosphate solubilizing bacteria (PSB), and using those bacteria to increase physiological seed quality and seedling growth of maize female parent. The research consisted of laboratory and field experiments. Laboratory experiment for the isolation and identification of rhizobacteria resulted in 25 Azotobacter and 29 Actinomycetes non-pathogenic isolates capable of fixing nitrogen and PSB selected for compatibility tests were AB3, B28, P12, P14, P24, and P31. The compatibility test showed 25 pairs of BPF with Azotobacter and 16 pairs of BPF with Actinomycetes were mutually compatible. The BPF pair with Azotobacter or Actinomycetes P24-AzL7, P24-AzL9, B28-AcCKB4, P24-AcCKB9, P24-AcCKB20, and P24-AcCKW5 were able to increase the vigor index of hybrid maize female parent seed. Field experiment was arranged in a split plot design with three replications. The main plot was dosage of N-P fertilizer (0%, 25%, 50%, 75%, and 100% of recommendation dosage), and the subplot was 12 rhizobacteria treatments selected from 25 compatible pairs of BPF with Azotobacter and 16 pairs of BPF with Actinomycetes and 1 control. The application of compatible pairs of bacteria had a significant effect on plant height, the number of leaves at 3 and 4 weeks after planting and plant dry weight. However, the best treatment i.e. B28-AcCKB4 was not significantly different with the nutrient broth treatment (as control).<br /><br /><br />


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 571
Author(s):  
Imane Benjelloun ◽  
Imane Thami Alami ◽  
Mohamed El Khadir ◽  
Allal Douira ◽  
Sripada M. Udupa

Biological nitrogen fixation requires a large amount of phosphorus (P). However, most of the soils are P-deficient and the extensive use of P- chemical fertilizers constitute a serious threat to the environment. In this context, two field experiments were carried out to investigate the effect of co-inoculation of Mesorhizobium ciceri with phosphate solubilizing bacteria (PSB), Bacillus sp., and Enterobacter aerogenes, on chickpea as an alternative to chemical nitrogen (N) and phosphorous fertilizers in P-deficient soils in dry areas of Morocco. The results revealed that combined inoculation of chickpea with rhizobia and PSB showed a significant enhancement of chickpea nodulation, biomass production, yields and N, P, and protein content in grains as compared to single inoculation or single application of N or P. A significantly higher increase was obtained by inoculating chickpea with Mesorhizobium sp. MA72 combined with E. aerogenes P1S6. This combination allowed an enhancement of more than 270% in nodulation, 192% in shoot dry weight and 242% in grain yield. The effect of this combination was equivalent to the effect of combined application of N and P fertilizers. Formulation of biofertilizers based on tasted strains could be used for chickpea co-inoculation in P-deficient soils for an eco-friendly sustainable production of chickpea.


2021 ◽  
Vol 9 (8) ◽  
pp. 1619
Author(s):  
Ana Ibáñez ◽  
Alba Diez-Galán ◽  
Rebeca Cobos ◽  
Carla Calvo-Peña ◽  
Carlos Barreiro ◽  
...  

On average less than 1% of the total phosphorous present in soils is available to plants, making phosphorous one of the most limiting macronutrients for crop productivity worldwide. The aim of this work was to isolate and select phosphate solubilizing bacteria (PSB) from the barley rhizosphere, which has other growth promoting traits and can increase crop productivity. A total of 104 different bacterial isolates were extracted from the barley plant rhizosphere. In this case, 64 strains were able to solubilize phosphate in agar plates. The 24 strains exhibiting the highest solubilizing index belonged to 16 different species, of which 7 isolates were discarded since they were identified as putative phytopathogens. The remaining nine strains were tested for their ability to solubilize phosphate in liquid medium and in pot trials performed in a greenhouse. Several of the isolated strains (Advenella mimigardefordensis, Bacillus cereus, Bacillus megaterium and Burkholderia fungorum) were able to significantly improve levels of assimilated phosphate, dry weight of ears and total starch accumulated on ears compared to non-inoculated plants. Since these strains were able to increase the growth and productivity of barley crops, they could be potentially used as microbial inoculants (biofertilizers).


2021 ◽  
Vol 13 (6) ◽  
pp. 3307
Author(s):  
Ismail Mahdi ◽  
Nidal Fahsi ◽  
Mohamed Hafidi ◽  
Saad Benjelloun ◽  
Abdelmounaaim Allaoui ◽  
...  

Introduction of quinoa (Chenopodium quinoa willd.), a gluten-free nutritious pseudo-cereal, outside its traditional growing areas exposed it to seedling damping-off. Here, we isolated eleven phosphate-solubilizing bacteria from the quinoa rhizosphere and assessed their effect on germination and seedlings growth. All isolates solubilized phosphate, produced indole3-acetic acid, hydrocyanic acid, siderophores, and ammonia. Genotypic analysis revealed that our strains are related to the genus of Bacillus, Pseudomonas, and Enterobacter. Strains Enterobacter asburiae (QD14, QE4, QE6, and QE16), Enterobacter sp. QE3, and Enterobacter hormaechei QE7 withstood 1.5 mg·L−1 of cadmium sulfate, 0.5 mg·mL−1 of nickel nitrate, and 1 mg·mL−1 of copper sulfate. Moreover, all strains solubilized zinc from ZnO; P. Stutzeri QD1 and E. asburiae QD14 did not solubilize Zn3(PO4)2 and CO3Zn, whereas CO3Zn was not solubilized by E. asburiae QE16. Bacillus atrophaeus S8 tolerated 11% NaCl. P. frederiksbergensis S6 and Pseudomonas sp. S7 induced biofilm formation. Anti-fusarium activity was demonstrated for E.asburiae QE16, P. stutzeri QD1, P. frederiksbergensis S6, Pseudomonas sp. S7, and B. atrophaeus S8. Lastly, inoculation of quinoa seeds with B. atrophaeus S8 and E. asburiae QB1 induced the best germination rate and seedling growth, suggesting their potential use as inoculants for salty and heavy metal or zinc contaminated soils.


2018 ◽  
Vol 4 (01) ◽  
pp. 70-75
Author(s):  
Ratul Baishya ◽  
Rhituporna Saikia

Phosphate solubilizing bacteria (PSB) helps in the solubilization of insoluble phosphates and thus lead to increase in crop yields. A study was conducted to isolate and characterize biochemically PSB from different agricultural crop soils of Delhi such as Garlic, Radish, Chilli, Onion and Cabbage. PSB were isolated in Pikovskaya solid medium and formation of solubilization (halo) zone was measured. 16 PSB were isolated and identified. The selected PSB differed in phosphate solubilizing efficiency, production of organic acids and phosphatases. Citrobacter sp. and Pseudomonas sp. were dominant in all the crop plants. Among all the isolates, Pseudomonas sp. proved to be an efficient phosphate solubilizer.


2015 ◽  
Vol 10 (2) ◽  
Author(s):  
Dolly Iriani Damarjaya ◽  
Jaka Widada ◽  
Keishi Senoo ◽  
Masaya Nishiyama ◽  
Shigeto Otsuka

The objectives of this study was to isolate and characterize the mineral phosphate solubilizing bacteriafrom rhizosphere and evaluate their potential as plant growth promoting bacteria in Al-toxic soils. The halozone formation method was used to isolate PSB using the media containing insoluble phosphates (Ca-P or Al-P)as a source of phosphate. Eight of acid and Al-tolerant PSB isolates that were able to solubilize Ca-P wereobtained from rhizosphere of clover, wheat, corn, and sunflower grown in Al-toxic soil. Identification of theisolates based on the 16S rRNA gene sequence analysis demonstrated that the isolates were strains of Burkholderia(5 strains), Pseudomonas (1 strain), Ralstonia (1 strain), and unidentified bacterium (1 strains). All PSB isolatesshowed the capability to dissolve Ca-P, and only 1 strain (Ralstonia strain) was able to dissolve Al-P in agar platemedium. The P-solubilization by these isolates was correlated with pH of medium. Inoculation of the bacterialstrains on clover on Al-toxic medium showed that all isolates increased the plant dry weight compared withuninoculated treatment. Our results showed that those PSB isolates have potential to be developed as a biofertilizerto increase the efficiency of P-inorganic fertilizer used in Al-toxic soils.


2015 ◽  
Vol 20 (3) ◽  
pp. 121-131
Author(s):  
Luz Marina LIZARAZO FORERO ◽  
Elsa Giovanna ÁVILA MARTÍNEZ ◽  
Francisco CORTÉS PÉREZ

<p>El objetivo de esta investigación fue aislar y caracterizar bacterias solubilizadoras de fosfatos (BSF) asociadas a la rizosfera de <em>Baccharis macrantha </em>y <em>Viburnum triphyllum,</em> y evaluar su capacidad para solubilizar fosfatos en condiciones <em>in vitro</em>. Además se determinó el efecto de la inoculaciónde las cepas de BSF más eficientes sobre el crecimiento de <em>B. macrantha</em>. Las muestras de suelo rizosférico de <em>B. macrantha </em>y <em>V. triphyllum </em>fueron colectadas en los meses de mayo-período de lluvia y septiembre-período seco del 2012. Para la cuantificación de bacterias heterótrofas cultivables y BSF se empleó el método de recuento en placa en los medios Agar Tripticasa de Soya y Pikovskaya (PVK) respectivamente. La capacidad de solubilización de fosfatos de las cepas aisladas se estimó a partir del diámetro de los halos formados alrededor de las colonias en el medio de cultivo PVK después de 7 días de incubación a 28 °C. Los ensayos de inoculación en <em>B. macrantha </em>se realizaron con las BSF más eficientes<em>. </em>La inoculación de las BSF <em>B. firmus y P. fluorescens</em> de forma individual y como inoculante combinado mostro un efecto benéfico, incrementando significativamente el porcentaje de germinación de semillas, la altura de la plántula, la longitud de la raíz y el peso seco de <em>B. macrantha</em>. La inoculación de BSF podría ser considerada una estrategia para mejorar el crecimiento y establecimiento de <em>B. macrantha</em> en pastizales abandonados.</p><p><strong>Growth Promotion of <em>Baccharis macrantha </em>(Asteraceae) by Phosphate Solubilizing Rhizosphere Bacteria</strong>     </p><p>The objectives of this research was to isolate and characterize phosphate solubilizing bacteria (BSF) associated to the rhizosphere of <em>Baccharis macrantha</em> and <em>Viburnum triphyllum</em>, and to assess their ability to solubilize phosphate under conditions in vitro. Furthermore to determine the effect of inoculation of the strains BSF more efficient on the growth of <em>B. macrantha</em>. Rhizosphere soil samples of <em>B. macrantha</em> and <em>V. triphyllum </em>were collected in the months of May-rainy season and September-period dry the 2012. Trypticase Soya Agar and Pikovskaya (PVK) were used for quantification of culturable heterotrophic bacteria and BSF, respectively. The phosphate solubilizing capacity of the isolated strains was estimated from the diameter of the halo around the colonies formed in the culture medium PVK after 7 days incubation at 28 °C. Inoculation assays were performed with more efficient BSF in <em>B. macrantha. </em>Inoculation of BSF <em>Bacillus firmus</em> and <em>Pseudomona fluorescens </em>individually and as inoculant combined showed a beneficial effect, significantly increasing the percentage of seed germination, seedling height, root length and dry weight of <em>B . macrantha</em>. Inoculation the BSF could be considered a strategy to improve the growth and development of <em>B. macrantha</em> in abandoned pastures</p>


Sign in / Sign up

Export Citation Format

Share Document