scholarly journals Mineral Phosphate Solubilizing Bacteria Isolated from Various Plant Rhizosphere under Different Aluminum Content

2015 ◽  
Vol 10 (2) ◽  
Author(s):  
Dolly Iriani Damarjaya ◽  
Jaka Widada ◽  
Keishi Senoo ◽  
Masaya Nishiyama ◽  
Shigeto Otsuka

The objectives of this study was to isolate and characterize the mineral phosphate solubilizing bacteriafrom rhizosphere and evaluate their potential as plant growth promoting bacteria in Al-toxic soils. The halozone formation method was used to isolate PSB using the media containing insoluble phosphates (Ca-P or Al-P)as a source of phosphate. Eight of acid and Al-tolerant PSB isolates that were able to solubilize Ca-P wereobtained from rhizosphere of clover, wheat, corn, and sunflower grown in Al-toxic soil. Identification of theisolates based on the 16S rRNA gene sequence analysis demonstrated that the isolates were strains of Burkholderia(5 strains), Pseudomonas (1 strain), Ralstonia (1 strain), and unidentified bacterium (1 strains). All PSB isolatesshowed the capability to dissolve Ca-P, and only 1 strain (Ralstonia strain) was able to dissolve Al-P in agar platemedium. The P-solubilization by these isolates was correlated with pH of medium. Inoculation of the bacterialstrains on clover on Al-toxic medium showed that all isolates increased the plant dry weight compared withuninoculated treatment. Our results showed that those PSB isolates have potential to be developed as a biofertilizerto increase the efficiency of P-inorganic fertilizer used in Al-toxic soils.

2017 ◽  
Vol 66 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Jian Zhang ◽  
Peng Cheng Wang ◽  
Ling Fang ◽  
Qi-An Zhang ◽  
Cong Sheng Yan ◽  
...  

Phosphorus is a major essential macronutrient for plant growth, and most of the phosphorus in soil remains in insoluble form. Highly efficient phosphate-solubilizing bacteria can be used to increase phosphorus in the plant rhizosphere. In this study, 13 isolates were obtained from waste mushroom residues, which were composed of cotton seed hulls, corn cob, biogas residues, and wood flour. NBRIP solid medium was used for isolation according to the dissolved phosphorus halo. Eight isolates produced indole acetic acid (61.5%), and six isolates produced siderophores (46.2%). Three highest phosphate-dissolving bacterial isolates, namely, M01, M04, and M11, were evaluated for their beneficial effects on the early growth of tomato plants (Solanum lycopersicum L. Wanza 15). Strains M01, M04, and M11 significantly increased the shoot dry weight by 30.5%, 32.6%, and 26.2%, and root dry weight by 27.1%, 33.1%, and 25.6%, respectively. Based on 16S rRNA gene sequence comparisons and phylogenetic positions, strains M01 and M04 belonged to the genus Acinetobacter, and strain M11 belonged to the genus Ochrobactrum. The findings suggest that waste mushroom residues are a potential resource of plant growth-promoting bacteria exhibiting satisfactory phosphate-solubilizing for sustainable agriculture.


2020 ◽  
Vol 20 (3) ◽  
pp. 475
Author(s):  
Lalu Zulkifli ◽  
Prapti Sedijani ◽  
Dewa Ayu Citra Rasmi ◽  
Lalu Wira Zain Amrullah

Phosphate solubilizing rhizobacteria can be used as a component in biofertilizer formulations to increase local and national food production without causing adverse risks to the environment compared to the use of chemical fertilizers. In this regard, screening and identification of phosphate solubilizing bacteria from the rhizosphere of several mangrove species that grow on the coast of Lombok Island has been carried out. The method of isolation used is the Pikovskaya method. Screening and identification activities have obtained 5 isolates of mangrove rhizosphere bacteria (BRM) which are indicated by their ability to form clear zones on Pikovskaya media, namely isolates BRM1 and BRM4 (isolated from the rhizosphere of Avicennia marina), BRM2 and BRM3 (isolated from the rhizosphere of Rhizophora apicullata), BRM5 (isolated from the rhizosphere of R. stylosa). All rhizobacteria isolates were identified as Gram-positive bacteria. Molecular analysis based on the comparison of 16S rRNA gene sequences of isolates with the genome database at GenBank (NCBI) using Mega 10 software, showed that all BRM isolates occupied the same cluster as bacterial species from the Genus Paenibacillus in the dendrogram of the phylogenetic tree, namely Paenibacillus sp. JWLB1 strain, Paenibacillus sp. Strain NO13, P. cineris strain cu1-7, P. favisporus strain CHP14, with genetic distance ranging from 1.3 to 1.4. Many species of the Genus Paenibacillus are currently known to play an important roles as plant growth-promoting bacteria. The BRM isolates obtained in this study can be further developed as a biofertilizer component (inoculant) in saline and dryland agriculture.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Enriqueta Amora-Lazcano ◽  
Héctor J. Quiroz-González ◽  
Cristofer I. Osornio-Ortega ◽  
Juan A. Cruz-Maya ◽  
Janet Jan-Roblero

Background: Deficiency in sorghum growth in ecosystems of low-nutrient soils has been scarcely studied. This soil deficiency can be overcome by the addition of plant growth-promoting bacteria which increase sorghum growth. Questions and/or Hypotheses: indole acetic acid (IAA) producing and phosphate solubilizing bacteria can promote sorghum growth under nutritional stress. Studied species: Sorghum bicolor (L.) Moench. Study site and dates: Mexico City, 2018. Methods: Of the twelve bacterial strains utilized, three produce IAA (group BI), two strains produce IAA and siderophores (BIS group), four strains produce IAA and solubilize phosphate (BIP group), and three strains produce IAA, solubilize phosphate, and produce siderophores (BIPS group). Hydroponic bioassays and low-nutrient soil bioassay were used. Results: In hydroponic bioassays, for BI and BIS groups, five strains significantly increased the growth parameters with respect to the control, and for the BIP and BIPS groups, two strains promoted stem development and shoot dry weight. In a low-nutrient soil bioassay, Pseudomonas sp. BI-1 (from BI group) was the one that presented the highest percentages 32, 48, 140 and 79 % in stem diameter, height and dry weight of the shoot and dry weight of the root, respectively, followed by the P. mohnii BIPS-10 strain (from BIPS group) that exhibited similar results. Conclusions: IAA producing Pseudomonas strains improve the sorghum growth in a low-nutrient soil and suggest thatPseudomonas sp. BI-1 and P. mohnii BIPS-10 could be used as potential bioinoculants for sorghum.


2019 ◽  
Vol 14 (1) ◽  
pp. 246-254 ◽  
Author(s):  
Tingting Zhang ◽  
Feng Hu ◽  
Lei Ma

AbstractPhosphate-solubilizing bacteria (PSB) can convert insoluble rhizosphere phosphorus into forms that are absorbable by plants and thus enhance the growth of plants. Safflower is a cash crop that is a source of vegetable oils, food coloring and flavoring agents. This study sought to isolate PSB in safflower rhizosphere soil and investigate their effects on seedling growth. The isolated PSB were identified as belonging to the genera Pseudomonas, Sinorhizobium, Staphylococcus, Acinetobacter and Enterobacter using 16S rRNA gene sequence analysis. Acinetobacter sp RC04. showed the best performance in phosphate solubilization, with the efficiency of the process being influenced by carbon source, nitrogen source, cultivation temperature and initial culture pH. Acinetobacter sp. RC04 and Sinorhizobium sp. RC02 showed the ability to improve safflower seed germination and, when co-inoculated, improved seedling growth. Hence, we suggest that Acinetobacter sp. RC04 and Sinorhizobium sp. RC02 could be developed for field application to promote safflower growth. The results from this study will help drive novel biofertilizer discovery and could be included in integrated nutrient management regimes for safflower and other important economic crops.


Author(s):  
C. Jenifer Lolita A. C. Manjula ◽  
E. Keshamma

Rhizosphere, phylloplane and caulosphere is the region where a complex community of microbes, mainly bacteria and fungi are present. The microbe plant interaction in these regions can be beneficial, neutral, variable, or deleterious for plant growth. The bacteria that exert beneficial effects on plant development are termed plant growth promoting bacteria. To quantify the amount of phosphate solubilizing bacteria from rhizosphere, phylloplane and caulosphere of brinjal (Solanum melongena L.). Materials and methods: Brinjal (Solanum melongena L.) plants of different varieties were collected from seven locations around Bangalore viz., Hessaraghatta, Yelahanka, Kengeri, Madi vala, Hebbal, Tirumalapura and Attibele were also screened for the presence of phosphate solubilizing bacteria. Nitrogenase activity was estimated by acetylene reduction assay and analyzed by gas chromatography. The amount of nitrogen fixed brinjal bacterial isolate was quantified by micro Kjeldhal method. The amount of nitrogen fixed by the BBI was equivalent to 23.5 nm of C2H2 reduced/tube/hour. The amount of nitrogen fixed by the BBI showed a steady increase upto three days (75 nm of C2H2 reduced/tube/hour) after which there was a decline in the amount of nitrogen fixed by the microbe. Phosphate solubilization by the bacteria isolated from brinjal is highly beneficial to the crop, as it would always make more phosphate available to the crop. This phosphate solubilizing potential could be harnessed to reduce the input of inorganic fertilizers. For the first time the presence of phosphate solubilizing bacteria on the rhizosphere and endorhizosphere of brinjal (Solanum Melongena L.) cultivars was established.


2016 ◽  
Vol 5 ◽  
pp. 79-87
Author(s):  
Umesh Prasad Shrivastava

Free-living nitrogen fixing bacteria were isolated from the rhizosphere of rice plant of different regions of Indo-Nepal border. 33.78% isolates among them showed mineral phosphate solubilization. On the basis of bacterial characterization and identification with Bergey’s manual of Determinative Bacteriology (Holt et al, 1994), 38% isolates showed maximum similarity with Pseudomonas and Azotobacter, 30% with members of Enterobacteriaceae, 4% with Gram’s positive Microbacterium sp. and 28% was categorized unknown. ECI 12A isolate showed maximum solubilization index (S.I.), 0.809 on solid medium whereas 188.65 mg P/mg dry weight phosphate solubilization in liquid medium. The highest phosphate solubilizing isolate ECI 12A was sequenced after amplification of partial 16S rRNA gene, blast with BLASTn 2.2.17 program of NCBI showed 99 % identity having 99 % query coverage with Microbacterium sp. This isolate has been named as Microbacterium sp. Strain ECI-12A.The sequence of this strain has been deposited in NCBI Gene Bank under accession number EU155122 and this strain has promising potential for developing as a plant growth promoting rhizobacteria (PGPR) as well as biofertilizer.Academic Voices Vol.5 2015: 79-87


2016 ◽  
Vol 5 (05) ◽  
pp. 1348 ◽  
Author(s):  
Swapna G.* ◽  
Divya M. ◽  
Brahmaprakash G.P.

The green revolution bought amazing consequences in food grain production but with insufficient concern for agriculture sustainability. Biofertilizers are gaining importance in sustaining agriculture. Various complementing combinations of microbial inoculants for management of major nutrients are necessary for agriculture sustainability. The present investigation was conducted to study the survivability of granular formulations containing Nitrogen fixing bacteria (Azotobacter chrococcum), phosphate solubilizing bacteria (Bacillus megaterium) and plant growth promoting bacteria (Pseudomonas fluorescens) in consortium prepared using different flour. Maximum survival of microbial consortium was observed in Soybean, followed by Soybean + Semolina and Rice inoculant formulations. Minimum survival of population was observed in Ragi + Semolina inoculant formulation. Wheat, wheat + semolina, soybean, soybean + semolina granular formulations have shown better degradation compared to other granular formulations both in presence and absence of tomato and finger millet (Eleusine coracana). Among different granular inoculant formulations, Maximum release was observed in soybean granular inoculant formulations in presence of tomato and Finger millet plant and in absence of plant and minimum release of microbial consortium was observed in ragi + semolina granular inoculant formulations during incubation in soil.


2020 ◽  
Vol 13 (2) ◽  
pp. 54-65 ◽  
Author(s):  
M.E.A. Bendaha ◽  
H.A. Belaouni

SummaryThis study aims to develop a biocontrol agent against Fusarium oxysporum f.sp. radicis-lycopersici (FORL) in tomato. For this, a set of 23 bacterial endophytic isolates has been screened for their ability to inhibit in vitro the growth of FORL using the dual plate assay. Three isolates with the most sound antagonistic activity to FORL have been qualitatively screened for siderophore production, phosphates solubilization and indolic acetic acid (IAA) synthesis as growth promotion traits. Antagonistic values of the three candidates against FORL were respectively: 51.51 % (EB4B), 51.18 % (EB22K) and 41.40 % (EB2A). Based on 16S rRNA gene sequence analysis, the isolates EB4B and EB22K were closely related to Enterobacter ludwigii EN-119, while the strain EB2A has been assigned to Leclercia adecarboxylata NBRC 102595. The promotion of tomato growth has been assessed in vitro using the strains EB2A, EB4B and EB22K in presence of the phytopathogen FORL. The treatments with the selected isolates increased significantly the root length and dry weight. Best results were observed in isolate EB4B in terms of growth promotion in the absence of FORL, improving 326.60 % of the root length and 142.70 % of plant dry weight if compared with untreated controls. In the presence of FORL, the strain EB4B improved both root length (180.81 %) and plant dry weight (202.15 %). These results encourage further characterization of the observed beneficial effect of Enterobacter sp. EB4B for a possible use as biofertilizer and biocontrol agent against FORL.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1071
Author(s):  
Minchong Shen ◽  
Jiangang Li ◽  
Yuanhua Dong ◽  
Hong Liu ◽  
Junwei Peng ◽  
...  

Microbial treatment has recently been attracting attention as a sustainable agricultural strategy addressing the current problems caused by unreasonable agricultural practices. However, the mechanism through which microbial inoculants promote plant growth is not well understood. In this study, two phosphate-solubilizing bacteria (PSB) were screened, and their growth-promoting abilities were explored. At day 7 (D7), the lengths of the root and sprout with three microbial treatments, M16, M44, and the combination of M16 and M44 (Com), were significantly greater than those with the non-microbial control, with mean values of 9.08 and 4.73, 7.15 and 4.83, and 13.98 and 5.68 cm, respectively. At day 14 (D14), M16, M44, and Com significantly increased not only the length of the root and sprout but also the underground and aboveground biomass. Differential metabolites were identified, and various amino acids, amino acid derivatives, and other plant growth-regulating molecules were significantly enhanced by the three microbial treatments. The profiling of key metabolites associated with plant growth in different microbial treatments showed consistent results with their performances in the germination experiment, which revealed the metabolic mechanism of plant growth-promoting processes mediated by screened PSB. This study provides a theoretical basis for the application of PSB in sustainable agriculture.


Sign in / Sign up

Export Citation Format

Share Document