Obtaining Influence Coefficients in Different Formats With Reduced Number of Trial Runs on Two-Plane Balancing

2021 ◽  
Author(s):  
John Yu ◽  
Nicolas P\xe9ton
Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1285
Author(s):  
Fuduo Li ◽  
Kangjie Zhang ◽  
Aibo Hao ◽  
Changbin Yin ◽  
Guosheng Wu

Nowadays, there is a growing interest in pro-environmental foods produced by pro-environmental practices. However, consumers’ payment motivations towards such foods are currently poorly understood. This manuscript provided a critical investigation of Chinese consumers’ intention to pay a premium (ITPP) for rice grown with green manure as crop fertilizer (GMR). One focus was the establishment of an explanatory structural research framework that includes effects of environmental behavior spillover (EBS) and public information induction (PII); another focus was to analyze the impacts of the selected structural elements on ITPP by introducing education as a moderator. Results suggest that consumers’ ITPP can be largely influenced by PII, therefore, for GMR marketers and policy makers, measures should be developed to widen consumers’ access to public information related to GMR and to improve their capacity of screening effective information. EBS, when ITPP remains low, emerged as a pivotal predictor of consumers’ ITPP. This observation provides us with the enlightenment that breeding consumers’ daily environmental behaviors is highly valued to inspire their payment intention in the early stages of GMR market development. Another finding is that, with the introduction of the educational variable, the influence coefficients of EBS and PII on ITPP increased from 0.42 and 0.53 to 0.61 and 0.66, respectively, which means that it is possible to boost consumers’ payment intention by improving their educational attainment. This study contributes to the existing literature by providing empirical evidence for the GMR industrial upgrading strategy and have significant implications for the environmental governance of the agricultural sector.


Author(s):  
L. Salles ◽  
M. Vahdati

The aim of this paper is to study the effects of mistuning on fan flutter and to compare the prediction of two numerical models of different fidelity. The high fidelity model used here is a three-dimensional, whole assembly, time-accurate, viscous, finite-volume compressible flow solver. The Code used for this purpose is AU3D, written in Imperial College and validated for flutter computations over many years. To the best knowledge of authors, this is the first time such computations have been attempted. This is due to the fact that, such non-linear aeroelastic computations with mistuning require large amount of CPU time and cannot be performed routinely and consequently, faster (low fidelity) models are required for this task. Therefore, the second model used here is the aeroelastic fundamental mistuning model (FMM) and it based on an eigenvalue analysis of the linearized modal aeroelastic system with the aerodynamic matrix calculated from the aerodynamic influence coefficients. The influence coefficients required for this algorithm are obtained from the time domain non-linear Code by shaking one blade in the datum (tuned) frequency and mode. Once the influence coefficients have been obtained, the computations of aero damping require minimal amount of CPU time and many different mistuning patterns can be studied. The objectives of this work are to: 1. Compare the results between the two models and establish the capabilities/limitations of aeroelastic FMM, 2. Check if the introduction of mistuning would bring the experimental and computed flutter boundaries closer, 3. Establish a relationship between mistuning and damping. A rig wide-chord fan blade, typical of modern civil designs, was used as the benchmark geometry for this study. All the flutter analyses carried out in this paper are with frequency mistuning, but the possible consequences of mistuned mode shapes are briefly discussed at the end of this paper. Only the first family of modes (1F, first flap) is considered in this work. For the frequency mistuning analysis, the 1F frequency is varied around the annulus but the 1F mode shapes remain the same for all the blades. For the mode shape mistuning computations, an FE analysis of the whole assembly different mass blades is performed. The results of this work clearly show the importance of mistuning on flutter. It also demonstrates that when using rig test data for aeroelastic validation of CFD codes, the amount mistuning present must be known. Finally, it should be noted that the aim of this paper is the study of mistuning and not steady/unsteady validation of a CFD code and therefore minimal aerodynamic data are presented.


Author(s):  
Felix Figaschewsky ◽  
Arnold Kühhorn

With increasing demands for reliability of modern turbomachinery blades the quantification of uncertainty and its impact on the designed product has become an important part of the development process. This paper aims to contribute to an improved approximation of expected vibration amplitudes of a mistuned rotor assembly under certain assumptions on the probability distribution of the blade’s natural frequencies. A previously widely used lumped mass model is employed to represent the vibrational behavior of a cyclic symmetric structure. Aerodynamic coupling of the blades is considered based on the concept of influence coefficients leading to individual damping of the traveling wave modes. The natural frequencies of individual rotor blades are assumed to be normal distributed and the required variance could be estimated due to experiences with the applied manufacturing process. Under these conditions it is possible to derive the probability distribution of the off-diagonal terms in the mistuned equations of motions, that are responsible for the coupling of different circumferential modes. Knowing these distributions recent limits on the maximum attainable mistuned vibration amplitude are improved. The improvement is achieved due to the fact, that the maximum amplification depends on the mistuning strength. This improved limit can be used in the development process, as it could partly replace probabilistic studies with surrogate models of reduced order. The obtained results are verified with numerical simulations of the underlying structural model with random mistuning patterns based on a normal distribution of individual blade frequencies.


Author(s):  
Alex Nakos ◽  
Bernd Beirow ◽  
Arthur Zobel

Abstract The radial turbine impeller of an exhaust turbocharger is analyzed in view of both free vibration and forced response. Due to random blade mistuning resulting from unavoidable inaccuracies in manufacture or material inhomogeneities, localized modes of vibration may arise, which involve the risk of severely magnified blade displacements and inadmissibly high stress levels compared to the tuned counterpart. Contrary, the use of intentional mistuning (IM) has proved to be an efficient measure to mitigate the forced response. Independently, the presence of aerodynamic damping is significant with respect to limit the forced response since structural damping ratios of integrally bladed rotors typically take extremely low values. Hence, a detailed knowledge of respective damping ratios would be desirable while developing a robust rotor design. For this, far-reaching experimental investigations are carried out to determine the damping of a comparative wheel within a wide pressure range by simulating operation conditions in a pressure tank. Reduced order models are built up for designing suitable intentional mistuning patterns by using the subset of nominal system modes (SNM) approach introduced by Yang and Griffin [1], which conveniently allows for accounting both differing mistuning patterns and the impact of aeroelastic interaction by means of aerodynamic influence coefficients (AIC). Further, finite element analyses are carried out in order to identify appropriate measures how to implement intentional mistuning patterns, which are featuring only two different blade designs. In detail, the impact of specific geometric modifications on blade natural frequencies is investigated.


1950 ◽  
Vol 17 (3) ◽  
pp. 249-256
Author(s):  
H. I. Flomenhoft

Abstract Recently, an increasing use has been made of the matrix-iteration method for determining mode shapes and frequencies, particularly with regard to dynamic problems in aircraft design. Its particular advantage is the relative ease with which it handles complex discontinuous structures whose elastic properties can be defined adequately only in terms of influence coefficients. The disadvantage of tedious calculations has been alleviated greatly by an “acceleration method” for convergence which has been described by Isakson. The predominant disadvantage to matrix iteration, however, has been the difficulty in obtaining mode shapes and frequencies higher than the fundamental. The purpose of this paper is to establish a technique for accomplishing this in a manner that is practical for use in industry, as proved by its successful application to many problems of this type in the Aero-Elastic and Structures Research Laboratory at the Massachusetts Institute of Technology. This is accomplished by applying a device worked out by L. A. Pipes, and extending it to the general case, at the same time organizing the computations in tabular form. Only a basic knowledge of matrix notation and dynamic systems is necessary to understand this development, and this can be obtained easily by a review of von Kármán and Biot’s work on this subject.


Author(s):  
Masahiro Kurosaki ◽  
Minoru Sasamoto ◽  
Kentaro Asaka ◽  
Keiko Nakamura ◽  
Daiki Kakiuchi

This paper presents an efficient numerical integration method for a volume dynamics model in gas turbine engine transient simulations. It is a modified implicit Euler method that allows a time increment that would not be stable with the explicit Euler method. The Jacobian matrix of a nonlinear engine model is evaluated along the steady state engine operation line and scheduled as a function of the corrected shaft speed in advance, eliminating the necessity of computing during the simulation. The proposed method was applied to transient simulations of a compressor rig test model composed of a compressor, a nozzle with variable geometry and a volume placed between them. The eigenvalues of the simplified volume dynamics were analytically derived. It is shown that they are functions of the characteristic time of the volume defined by mass present in the volume divided by mass flow rate flowing into and out of the volume and dimensionless influence coefficients of nearby components.


1980 ◽  
Vol 47 (4) ◽  
pp. 861-865 ◽  
Author(s):  
G. V. Ranjan ◽  
C. R. Steele

Asymptotic expansions for self-equilibrating edge loading are derived in terms of exponential functions, from which formulas for the stiffness and flexibility edge influence coefficients are obtained, which include the quadratic nonlinear terms. The flexibility coefficients agree with those previously obtained by Van Dyke for the pressurized spherical shell and provide the generalization to general geometry and loading. In addition, the axial displacement is obtained. The nonlinear terms in the differential equations can be identified as “prestress” and “quadratic rotation.” To assess the importance of the latter, the problem of a pressurized spherical cap with roller supported edges is considered. Results show that whether the rotation at the edge is constrained or not, the quadratic rotation terms do not have a large effect on the axial displacement. The effect will be large for problems with small membrane stresses.


1989 ◽  
Vol 203 ◽  
pp. 401-418 ◽  
Author(s):  
David Elad ◽  
Roger D. Kamm ◽  
Ascher H. Shapiro

Steady, one-dimensional flow of a compressible fluid through a collapsible tube is analysed. A general model is employed, incorporating axial variations in the parameters of the conducting system, such as the tube unstressed cross-section area and wall stiffness, the external pressure and energy exchange with the environment. The flow variables are described in differential form as functions of the conduit system parameters. A coupled set of equations for the dependent flow variables is summarized in a table of influence coefficients, which provides a clear and simple description of the effects produced by the system parameters. Examples of the effects of fluid compressibility in the respiratory system are presented for forced expiration manoeuvres. The effects are found to be generally small, but are most accentuated when breathing heavy gases and when the airways are pathologically stiffened.


Sign in / Sign up

Export Citation Format

Share Document