Dynamic Analysis of Piston Secondary Motion for Small Reciprocating Compressors

2000 ◽  
Vol 122 (4) ◽  
pp. 752-760 ◽  
Author(s):  
A. T. Prata ◽  
J. R. S. Fernandes ◽  
F. Fagotti

Piston dynamics plays a fundamental role in two critical processes related to fluid flow in reciprocating compressors. The first is the gas leakage through the radial clearance, which may cause considerable loss in the pumping efficiency of the compressor. The second process is the viscous friction associated with the lubricant film in the radial clearance. In the present contribution a numerical simulation is performed for a ringless piston inside the cylinder of a reciprocating compressor, including both the axial and the radial piston motion. The compressor considered here is a small hermetic compressor employed in domestic refrigerators, with the radial clearance between piston and cylinder filled with lubricant oil. In operation, the piston moves up and down along the axis of the cylinder, but the radial oscillatory motion in the cylinder bore, despite being usually small, plays a very important role on the compressor performance and reliability. The compromise between oil leakage through the piston-cylinder clearance and the friction losses requires a detailed analysis of the oscillatory motion for a good design. All corresponding forces and moments are included in the problem formulation of the piston dynamics in order to determine the piston trajectory, velocity and acceleration at each time step. The hydrodynamic force is obtained from the integration of the pressure distribution on the piston skirt, which, in turn, is determined from a finite volume solution of the time dependent equation that governs the oil flow. A Newton-Raphson procedure was employed in solving the equations of the piston dynamics. The results explored the effects of some design parameters and operating conditions on the stability of the piston, the oil leakage, and friction losses. Emphasis was placed on investigating the influence of the pin location, radial clearance and oil viscosity on the piston dynamics. [S0742-4787(11)00301-8]

2001 ◽  
Vol 1 (1) ◽  
pp. 56
Author(s):  
A. T. Prata ◽  
J. R. S. Fernandes ◽  
F. Fagotti

Piston dynamics plays a fundamental role in two critical processes related to fluid flow in reciprocating compressors. The first is the refrigerant leakage through the radial clearance, which may cause considerable loss in the pumping efficiency of the compressor. The second process is the viscous friction associated with the lubricant film in the radial clearance; certainly a significant factor in the compressor energy consumption. In the present contribution a numerical simulation of the piston movement inside the cylinder of a reciprocating compressor is performed. The compressor considered here is a small hermetic compressor employed in domestic refrigerators. For the problem formulation both the axial and the radial piston motion is considered. In operation, the piston moves up and down along the axis of the cylinder, but the radial oscillatory motion in the cylinder bore, despite being usually small, plays a very important role on the compressor performance and reliability. The compromise between sealing of the gas leakage through the piston-cylinder clearance and the friction losses requires a detailed analysis of the oscillatory motion for a good design. The forces acting on the piston are the hydrodynamic force due to the pressure build up in the oil film (lubrication effects), the force due to the connecting rod, the viscous force associated with the relative motion between the piston and oil, and the force exerted by the gas on the top of the piston. All corresponding moments are also included in the problem formulation of the piston dynamics, in order to determine the piston trajectory, velocity and acceleration at each time step. The hydrodynamic force is obtained from the integration of the pressure distribution on the piston skirt, which, in turn, is determined from a finite volume solution of the time dependent equation that governs the oil flow. A Newton-Raphson procedure was employed in solving the equations of the piston dynamics. The results explored the effects of some design parameters and operating conditions on the stability of the piston, its sealing performance and friction losses. Emphasis was placed on investigating the influence of the pin location, radial clearance and oil viscosity on the piston dynamics. The complexity of the piston movement in reciprocating compressors was demonstrated and the detailed model presented can be employed as an useful tool for engineering design.


2002 ◽  
Vol 1 (1) ◽  
Author(s):  
A. T. Prata ◽  
J. R. S. Fernandes ◽  
F. Fagotti

Piston dynamics plays a fundamental role in two critical processes related to fluid flow in reciprocating compressors. The first is the refrigerant leakage through the radial clearance, which may cause considerable loss in the pumping efficiency of the compressor. The second process is the viscous friction associated with the lubricant film in the radial clearance; certainly a significant factor in the compressor energy consumption. In the present contribution a numerical simulation of the piston movement inside the cylinder of a reciprocating compressor is performed. The compressor considered here is a small hermetic compressor employed in domestic refrigerators. For the problem formulation both the axial and the radial piston motion is considered. In operation, the piston moves up and down along the axis of the cylinder, but the radial oscillatory motion in the cylinder bore, despite being usually small, plays a very important role on the compressor performance and reliability. The compromise between sealing of the gas leakage through the piston-cylinder clearance and the friction losses requires a detailed analysis of the oscillatory motion for a good design. The forces acting on the piston are the hydrodynamic force due to the pressure build up in the oil film (lubrication effects), the force due to the connecting rod, the viscous force associated with the relative motion between the piston and oil, and the force exerted by the gas on the top of the piston. All corresponding moments are also included in the problem formulation of the piston dynamics, in order to determine the piston trajectory, velocity and acceleration at each time step. The hydrodynamic force is obtained from the integration of the pressure distribution on the piston skirt, which, in turn, is determined from a finite volume solution of the time dependent equation that governs the oil flow. A Newton-Raphson procedure was employed in solving the equations of the piston dynamics. The results explored the effects of some design parameters and operating conditions on the stability of the piston, its sealing performance and friction losses. Emphasis was placed on investigating the influence of the pin location, radial clearance and oil viscosity on the piston dynamics. The complexity of the piston movement in reciprocating compressors was demonstrated and the detailed model presented can be employed as an useful tool for engineering design.


2021 ◽  
Author(s):  
Jose Caridad ◽  
Arthur Watson ◽  
Song Shang ◽  
Eric Nguyen ◽  
Gocha Chochua

Abstract Electric submersible pump (ESP) systems use thrust bearings in the seal section to handle the thrust generated by the pump stages. Thrust bearings are subjected to harsh operating conditions, including high loads, poor oil circulation, and motor oil viscosity degradation. A less-recognized issue is gas becoming centrifugally trapped under the thrust runner. The gas may be present because of incomplete purging of air during filling, permeation of well gas into the motor oil, or gradual gasification of motor oil at high temperatures. Because thrust bearings are such critical components, it is of interest to increase their reliability, which in turn will increase ESP life. A novel gas purging system (GPS) was designed to alleviate stressors on thrust bearings, including gas accumulation, viscosity deterioration and gasification at high temperature, and low working oil volume. GPS circulates oil along with any gas that accumulates under the thrust runner up to a quiet separation chamber. Degassed oil circulates back to the thrust bearing, while accumulated gas eventually purges to the wellbore through relief valves on subsequent on/off cycles. GPS also improves viscosity and reduces gasification by cooling the oil, and it provides a greater working volume of thrust bearing oil to reduce the effects of oil deterioration. This paper details the GPS design principles as well as the optimization of the different design parameters that affect its performance conducted via computational fluid dynamics (CFD). Observations captured on a test fixture built using the final configuration are also presented, validating the intended functionality.


Author(s):  
H Hirani

An optimal design of hydrodynamic journal bearing using mass conserving thermal analysis and genetic algorithms is presented. Simultaneous minimization of power loss and oil flow, subjected to constraints on film thickness, film pressure, and temperature rise between the bearing surfaces, is the objective of this study. The radial clearance, L/D ratio, oil groove location, feed pressure, and the oil viscosity are the design variables. The rank-based genetic algorithm is used to deal with the discrete variables and multimodal objective functions and to capture Pareto optimal points. In view of computation economics and robustness, initial guesses of oil film pressure distribution, eccentricity ratio, and attitude angle obtained by two-dimensional analytical approach are provided for mass conserving thermal analysis. The complete optimization strategy is illustrated by a step-by-step (in four steps) approach. A comparative study of thermal and isothermal analyses is illustrated. Effects of constraints on temperature, pressure, and film thickness on the design vector are enlightened. The mass conserving thermal analysis is validated against experimental results. Pareto optimal fronts for various operating conditions are presented.


Author(s):  
Ozgur Gunelsu ◽  
Ozgen Akalin

A comprehensive piston skirt lubrication and secondary motion model that can be used for piston friction simulations was developed based on Greenwood and Tripp’s surface asperity contact model and Patir and Cheng’s modified Reynolds equation with surface flow factors. Oil flow between the skirt-liner clearances was modeled and hydrodynamic and asperity contact pressures around the skirt were calculated. Reynolds boundary conditions were applied to determine the film rupture boundaries and wetted areas. Surface roughness and roughness orientation were included in the model. Due to its important effect on pressure development in the oil film, change in the skirt profile due to elastic deformations was taken into account. Change of the skirt profile due to piston thermal expansion is also calculated using the steady-state temperature distribution of the piston corresponding to the investigated engine running conditions. A piston stiffness matrix obtained by finite element analysis was used to determine the elastic deformations of the piston skirt under the calculated oil film pressures. A two-degree-of-freedom system is formed with the forces and moments calculated by the lubrication model. These forces and moments require a coupled solution with piston position. This is achieved by applying an iterative numerical procedure based on Broyden’s scheme which seeks force and moment balance at each iteration phase making use of time step variation. The effects of various engine operating conditions and piston design parameters on piston secondary motion were investigated. Piston skirt friction force due to hydrodynamic shear forces and metal-to-metal contact is calculated.


Author(s):  
Krystof Kryniski

Abstract Due to their reliability and low maintenance costs over an extended service time, the journal bearings, also known as fluid-film bearings, are commonly incorporated in the super-critical rotor systems. Together with proven balancing methods, they allow rotating machine to pass smoothly through the various of critical speeds, both during start-ups and shut-downs. However, journal bearings need to be designed very carefully, as at some operating conditions (speed and load), they may introduce the undesired effects, such as unstable operations or sub-harmonic resonances. The standard procedure leading to the optimum fluid-film bearing design is based on the bearing capacity, defined by the Sommerfield number [1][2]. When Sommerfield number is determined, all design parameters, such as viscosity, radial clearance, diameter and rotation speed, etc. are matched to satisfy the engineering requirements specified. The procedure is considered to be completely reliable and is commonly used in turbo-machinery and high-speed compressor design. However, the significant divergences between theory and practice were observed with the increase of a bearing radial clearance [3].


2016 ◽  
Vol 138 (6) ◽  
Author(s):  
A. A. Cavalini ◽  
A. G. S. Dourado ◽  
F. A. Lara-Molina ◽  
V. Steffen

This paper is dedicated to the analysis of uncertainties affecting the load capability of a 4-pad tilting-pad journal bearing in which the load is applied on a given pad load on pad configuration (LOP). A well-known stochastic method has been used extensively to model uncertain parameters by using the so-called Monte Carlo simulation. However, in the present contribution, the inherent uncertainties of the bearing parameters (i.e., the pad radius, the oil viscosity, and the radial clearance; bearing assembly clearance) are modeled by using a fuzzy dynamic analysis. This alternative methodology seems to be more appropriate when the stochastic process that characterizes the uncertainties is unknown. The analysis procedure is confined to the load capability of the bearing, being generated by the envelopes of the pressure fields developed on each pad. The hydrodynamic supporting forces are determined by considering a nonlinear model, which is obtained from the solution of the Reynolds equation. The most significant results are associated to the changes in the steady-state condition of the bearing due to the reaction forces that are modified according to the uncertainties introduced in the system. Finally, it is worth mentioning that the uncertainty analysis in this case provides relevant information both for design and maintenance of tilting-pad hydrodynamic bearings.


Lubricants ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 97
Author(s):  
Thomas Hagemann ◽  
Huanhuan Ding ◽  
Esther Radtke ◽  
Hubert Schwarze

The application of sliding planet gear bearings in wind turbine gearboxes has become more common in recent years. Assuming practically applied helix angles, the gear mesh of the planet stage causes high force and moment loads for these bearings involving high local loads at the bearing edges. Specific operating behavior and suitable design measures to cope with these challenging conditions are studied in detail based on a thermo-hydrodynamic (THD) bearing model. Radial clearance and axial crowning are identified as important design parameters to reduce maximum pressures occurring at the bearing edges. Furthermore, results indicate that a distinct analysis of the gear mesh load distribution is required to characterize bearing operating behavior at part-load. Here, operating conditions as critical as the ones reached at nominal load might occur. Wear phenomena can improve the shape of the gap in the circumferential as well as in axial direction incorporating a significant reduction of local maximum pressures. The complexity of the combination of these aspects and the additionally expected impact of structure deformation gives an insight into the challenges in the design processes of sliding planet gear bearings for wind turbine gearbox applications.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
F. A. Lara-Molina ◽  
A. A. Cavalini ◽  
V. Steffen ◽  
N. V. Cabrera

Abstract This paper evaluates the effects of uncertainties on the load capacity of a four-pad tilting-pad journal bearing, in which the pad radius, oil viscosity, and radial clearance are considered as uncertain information. The hydrodynamic supporting forces at the bearing pads are obtained by solving the Reynolds equation. In this case, the uncertain parameters are modeled as fuzzy type-2 variables. Fuzzy type-2 sets have been widely used due to their ability to model higher orders of uncertainties as compared with the fuzzy type-1 approach. They allow for inaccurate knowledge to be included in the membership functions used to describe the uncertain parameters. In the present contribution, the so-called α-level optimization was associated with the fuzzy type-2 technique for uncertainty analysis purposes. A sensitivity analysis was also carried out as an additional assessment of the considered uncertain parameters. The numerical results allowed to understand how the uncertain parameters affect the bearing supporting forces for three shaft speeds, namely, 3000, 9000, and 15,000 rpm. It was demonstrated that the effect of the uncertain parameters on the supporting forces increases according to the shaft speed. Additionally, the load capacity revealed to be more sensitive to variations on the oil viscosity and radial clearance than to the pad radius concerning the adopted uncertain interval. Consequently, the obtained results can provide suitable information for the design, manufacturing, and maintenance of tilting-pad journal bearings.


Author(s):  
Aldemir Ap Cavalini ◽  
Fabian Andres Lara-Molina ◽  
Arinan Dourado ◽  
Valder Steffen

This paper is dedicated to the analysis of uncertainties affecting the load capability of a 4-pad tilting-pad journal bearing, in which the load is applied between two pads (load on pad configuration; LOP). A well-known stochastic method has been extensively used to model uncertain parameters, the so-called Monte Carlo simulation. However, in the present contribution, the inherent uncertainties of the bearings’ parameters (i.e. the pad radius, the oil viscosity, and the radial clearance) are modeled by using a fuzzy logic based analysis. This alternative methodology seems to be more appropriate when the stochastic process that characterizes the uncertainties is unknown. The analysis procedure is confined to the load capability of the bearing, being generated by the envelopes of the pressure fields developed on each pad. The hydrodynamic supporting forces are determined by considering a nonlinear model, which is obtained from the solution of the Reynolds’ equation. The most significant results are associated to the changes in the dynamic behavior of the bearing because of the reaction forces that are modified according the uncertainties introduced in the system. Finally, it is worth mentioning that the uncertainty analysis in this case provides relevant information both for design and maintenance of tilting-pad hydrodynamic bearings.


Sign in / Sign up

Export Citation Format

Share Document