Determination of Kinetic Energy Distribution in a Laser-Ablated Titanium Plume by Emission and Laser-Induced Fluorescence Spectroscopy

2000 ◽  
Vol 122 (4) ◽  
pp. 771-775 ◽  
Author(s):  
S. S. Chu ◽  
C. P. Grigoropoulos

Pulsed laser deposition (PLD) of thin films has become a viable technique for a wide range of applications over the last few decades. As kinetic energy of the ablated plume is an important parameter in determining the quality of the film; consequently there is great interest in nonintrusive evaluation of the plume kinetic energy. Spectroscopic techniques such as optical time-of-flight (TOF) utilizes emission spectroscopy or laser-induced-fluorescence (LIF) and is an excellent method for this purpose since they offer temporal and spatial resolution as well as the capability of distinguishing different species. In this paper, the effects of laser fluence and background gas pressure on the kinetic energies of the ablated species are found by the optical time-of flight technique and by emission imaging. Laser-induced-fluorescence is employed for spectrally resolved imaging. The axial velocity of neutral titanium is found to be as high as 2×104 m/s. The distribution of species within the plume is also determined. [S0022-1481(00)01704-7]

1999 ◽  
Author(s):  
Schubert S. Chu ◽  
Costas P. Grigoropoulos

Abstract Pulsed laser deposition (PLD) of thin films has evolved into a well-recognized technique for a wide range of materials and in a variety of devices. There is great interest in the energy characterization of the ablated plume because this is a key parameter in determining the quality of the deposited film. Spectroscopic techniques, such as optical time-of-flight (TOF,) emission spectroscopy, and laser-induced-fluorescence (LIF) are excellent methods for this purpose since they offer temporal and spatial resolution as well as the capability of distinguishing different species. The effects of laser fluence and background gas pressure on the kinetic energies of the ablated species were found by the optical time-of flight technique and by emission imaging. Furthermore, laser-induced-fluorescence was employed for spectrally resolved imaging. The results provide additional data on the kinetic energy and the distribution of neutral titanium. The axial velocity of neutral titanium was found to be as high as 2 × 104 m/s. The distribution of species within the plume was also determined.


1995 ◽  
Vol 51 (3) ◽  
pp. 2294-2300 ◽  
Author(s):  
M. Vedel ◽  
M. Knoop ◽  
D. Lunney ◽  
I. Rebatel ◽  
F. Vedel

Author(s):  
Sefa Celik ◽  
Ali Tugrul Albayrak ◽  
Sevim Akyuz ◽  
Aysen E. Ozel

FTIR and Raman spectroscopy are complementary spectroscopic techniques that play an important role in the analysis of molecular structure and the determination of characteristic vibrational bands. Vibrational spectroscopy has a wide range of applications including mainly in physics and biology. Its applications have gained tremendous speed in the field of biological macromolecules and biological systems, such as tissue, blood, and cells. However, the vibrational spectra obtained from the biological systems contain a large number of data and information that make the interpretation difficult. To facilitate the analysis, multivariant analysis comprising the reduction of the dimension of spectrum data and classification of them by eliminating redundancy data, which are obtained from the spectra and does not have any role, becomes critical. In this chapter, the applications of Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and their combination PCA-LDA, which are widely used among multivariant techniques on biological systems will be disclosed.


2005 ◽  
Vol 83 (3) ◽  
pp. 185-194 ◽  
Author(s):  
X Chris Le ◽  
Victor Pavski ◽  
Hailin Wang

The combination of affinity recognition, capillary electrophoresis (CE), laser-induced fluorescence (LIF), and fluorescence polarization for the ultrasensitive determination of compounds of biological interest is described. Competitive immunoassays using CE–LIF eliminate the need for fluorescently labeling trace analytes of interest and are particularly useful for determination of small molecules, such as cyclosporine, gentamicin, vancomycin, and digoxin. Fluorescence polarization allows for differentiation of the antibody-bound from the unbound small molecules. Noncompetitive affinity CE–LIF assays are shown to be highly effective in the determination of biomarkers for DNA damage and HIV-1 infection. An antibody (or aptamer) is used as a fluorescent probe to bind with a target DNA adduct (or the reverse transcriptase of the HIV-1 virus), with the fluorescent reaction products being separated by CE and detected by LIF. Aptamers are attractive affinity probes for protein analysis because of high affinity, high specificity, and the potential for a wide range of target proteins. Fluorescence polarization provides unique information for studying molecular interactions. Innovative integrations of these technologies will have broad applications ranging from cancer research, to biomedical diagnosis, to pharmaceutical and environmental analyses.Key words: capillary electrophoresis, laser-induced fluorescence, fluorescence polarization, immunoassay, affinity probes, antibodies, aptamers, DNA damage, toxins, therapeutic drugs.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5721
Author(s):  
Matthias Koegl ◽  
Mohammad Pahlevani ◽  
Lars Zigan

In this work, the possibility of using a two-color LIF (laser-induced fluorescence) approach for fuel composition and temperature measurements using nile red dissolved in n-decane/butanol blends is investigated. The studies were conducted in a specially designed micro cell enabling the detection of the spectral LIF intensities over a wide range of temperatures (283–423 K) and butanol concentrations (0–100 vol.%) in mixtures with n-decane. Furthermore, absorption spectra were analyzed for these fuel mixtures. At constant temperature, the absorption and LIF signals exhibit a large spectral shift toward higher wavelengths with increasing butanol concentration. Based on this fact, a two-color detection approach is proposed that enables the determination of the butanol concentration. This is reasonable when temperature changes and evaporation effects accompanied with dye enrichment can be neglected. For n-decane, no spectral shift and broadening of the spectrum are observed for various temperatures. However, for butanol admixture, two-color thermometry is possible as long as the dye and butanol concentrations are kept constant. For example, the LIF spectrum shows a distinct broadening for B20 (i.e., 80 vol.% n-decane, 20 vol.% butanol) and a shift of the peak toward lower wavelengths of about 40 nm for temperature variations of 140 K.


Author(s):  
Theodoros Tsoulos ◽  
Supriya Atta ◽  
Maureen Lagos ◽  
Michael Beetz ◽  
Philip Batson ◽  
...  

<div>Gold nanostars display exceptional field enhancement properties and tunable resonant modes that can be leveraged to create effective imaging tags or phototherapeutic agents, or to design novel hot-electron based photocatalysts. From a fundamental standpoint, they represent important tunable platforms to study the dependence of hot carrier energy and dynamics on plasmon band intensity and position. Toward the realization of these platforms, holistic approaches taking into account both theory and experiments to study the fundamental behavior of these</div><div>particles are needed. Arguably, the intrinsic difficulties underlying this goal stem from the inability to rationally design and effectively synthesize nanoparticles that are sufficiently monodispersed to be employed for corroborations of the theoretical results without the need of single particle experiments. Herein, we report on our concerted computational and experimental effort to design, synthesize, and explain the origin and morphology-dependence of the plasmon modes of a novel gold nanostar system, with an approach that builds upon the well-known plasmon hybridization model. We have synthesized monodispersed samples of gold nanostars with finely tunable morphology employing seed-mediated colloidal protocols, and experimentally observed narrow and spectrally resolved harmonics of the primary surface plasmon resonance mode both at the single particle level (via electron energy loss spectroscopy) and in ensemble (by UV-Vis and ATR-FTIR spectroscopies). Computational results on complex anisotropic gold nanostructures are validated experimentally on samples prepared colloidally, underscoring their importance as ideal testbeds for the study of structure-property relationships in colloidal nanostructures of high structural complexity.</div>


2017 ◽  
Vol 15 (1) ◽  
pp. 21
Author(s):  
Haryo Suganda ◽  
Raja Muhammad Amin

This study is motivated the identification of policies issued by the regional Governmentof Rokan Hulu in the form of Regulatory region number 1 by 2015 on the determination of thevillage and Indigenous Village. Political dynamics based on various interests against themanufacture of, and decision-making in the process of formation of the corresponding localregulations determination of Indigenous Villages in the Rokan Hulu is impacted to a verysignificantamount of changes from the initial draft of the number i.e. 21 (twenty one) the villagebecame Customary 89 (eighty-nine) the Indigenous Villages who have passed. Type of thisresearch is a qualitative descriptive data analysis techniques. The research aims to describe theState of the real situation in a systematic and accurate fact analysis unit or related research, aswell as observations of the field based on the data (information). Method of data collectionwas done with interviews, documentation, and observations through fieldwork (field research).The results of the research on the process of discussion of the draft local regulations andmutual agreement about Designation of Indigenous Villages in the Rokan Hulu is, showed thatthe political dynamics that occur due to the presence of various political interests, rejectionorally by Villagers who were judged to have met the requirements of Draft Regulations to beformulated and the area for the set to be Indigenous Villages, and also there is a desire fromsome villages in the yet to Draft local regulations in order to set the Indigenous village , there isa wide range of interests of these aspects influenced the agreement to assign the entire localVillage which is in the Rokan Hulu become Indigenous village, and the village of Transmigrationinto administrative Villages where the initiator of the changes in the number of IndigenousVillages in the Rokan Hulu it is the desire of the local Government of its own.


Sign in / Sign up

Export Citation Format

Share Document