A Study of Residual Stresses and Microstructure in 2024-T3 Aluminum Friction Stir Butt Welds

2002 ◽  
Vol 124 (2) ◽  
pp. 215-221 ◽  
Author(s):  
M. A. Sutton ◽  
A. P. Reynolds ◽  
D.-Q. Wang ◽  
C. R. Hubbard

Three-dimensional residual stress mapping of an aluminum 2024-T3 arcan specimen, butt-welded by the friction stir technique, was performed by neutron diffraction. Results indicate that the residual stress distribution profiles across the weld region are asymmetric with respect to the weld centerline, with the largest gradients in the measured residual stress components occurring on the advancing side of the weld, with the longitudinal stress, σL, oriented along the weld line, as the largest stress. Within the region inside the shoulder diameter, the through-thickness stress, σZ, is entirely compressive, with large gradients occurring along the transverse direction just beyond the shoulder region. In addition, results indicate a significant reduction in the observed residual stresses for a transverse section that was somewhat closer to the free edge of an Arcan specimen. Microstructural studies indicate that the grain size in the weld nugget, is approximately 6.4 microns, with the maximum extent of the recrystallized zone extending to 6 mm on each side of the weld centerline. Outside of this region, the plate material has an unrecrystallized grain structure that consists of pancake shaped grains ranging up to several mm in size in two dimensions and 10 microns in through-thickness dimension.

2008 ◽  
Vol 43 (2) ◽  
pp. 109-119 ◽  
Author(s):  
W Jiang ◽  
K Yahiaoui

A sequentially coupled three‐dimensional thermomechanical finite element model has been developed to predict residual stress distributions in a multipass welded piping branch junction. The residual stresses at the branch and run pipe cross‐sections, as well as along the circumferential weldlines on the outer surfaces of both the run and the branch pipes and on the inner surface of the branch pipe, are predicted. Three levels of interpass temperature have been selected to investigate their effect on the peak residual stresses. It is revealed that the interpass temperature has a significant effect on the residual stresses. As the interpass temperature is increased, both the peak hoop and the axial residual stresses at the run and branch cross‐sections decrease. The peak normal stresses along the circumferential weldline on the outer surface of the run pipes are also reduced. However, increasing the interpass temperature had a negligible effect on the peak tangential residual stresses along the circumferential weld line on the inner surface of the branch pipe. The results presented and the modelling technique described in the current study can be used towards formulating a recommendation to optimize residual stress profiles in multipass welded complex geometries through better interpass temperature control.


Author(s):  
Xian-Kui Zhu ◽  
Rick Wang

Mechanical dents often occur in transmission pipelines, and are recognized as one of major threats to pipeline integrity because of the potential fatigue failure due to cyclic pressures. With matured in-line-inspection (ILI) technology, mechanical dents can be identified from the ILI runs. Based on ILI measured dent profiles, finite element analysis (FEA) is commonly used to simulate stresses and strains in a dent, and to predict fatigue life of the dented pipeline. However, the dent profile defined by ILI data is a purely geometric shape without residual stresses nor plastic deformation history, and is different from its actual dent that contains residual stresses/strains due to dent creation and re-rounding. As a result, the FEA results of an ILI dent may not represent those of the actual dent, and may lead to inaccurate or incorrect results. To investigate the effect of residual stress or plastic deformation history on mechanics responses and fatigue life of an actual dent, three dent models are considered in this paper: (a) a true dent with residual stresses and dent formation history, (b) a purely geometric dent having the true dent profile with all stress/strain history removed from it, and (c) a purely geometric dent having an ILI defined dent profile with all stress/strain history removed from it. Using a three-dimensional FEA model, those three dents are simulated in the elastic-plastic conditions. The FEA results showed that the two geometric dents determine significantly different stresses and strains in comparison to those in the true dent, and overpredict the fatigue life or burst pressure of the true dent. On this basis, suggestions are made on how to use the ILI data to predict the dent fatigue life.


2021 ◽  
Vol 163 (A2) ◽  
Author(s):  
M Sahu ◽  
A Paul ◽  
S Ganguly

In this article, a 3D finite element based thermo-mechanical model for friction stir welding (FSW) of a marine-grade aluminium alloy 5083 is proposed. The model demonstrates the thermal evaluation and the distribution of residual stresses and strains under the variation of process variables. The temperature profile of the weld joint during the FSW process and the mechanical properties of the joints are also experimentally evaluated. The necessary calibration of the model for the correct implementation of the thermal loading, mechanical loading, and boundary conditions was performed using the experimental results. The model simulation and experimental results are analyses in view of the process-property correlation study. The residual stress was evaluated along, and across the weld, centreline referred as longitudinal and transverse residual stresses, respectively. The magnitude of longitudinal residual stress is noted 60-80% higher than that of the transverse direction. The longitudinal residual stress generated a tensile oval shaped stress region around the tool shoulder confined to a maximum distance of about 25mm from the axis of the tool along the weld line. It encompasses the weld-nugget to thermo-mechanically affected zone (TMAZ), while the parent metal region is mostly experiences the compressive residual stresses. However, the transverse residual stress region appears like wing shaped region spread out in both the advancing and retreating side of the weld and occupying approximately double the area as compared to the longitudinal residual stresses. Overall, the study revealed a corelation between the FSW process variables such as welding speed and the tool rotational speed with the residual stress and the mechanical properties of the joint.


1997 ◽  
Vol 119 (2) ◽  
pp. 137-141 ◽  
Author(s):  
J. H. Root ◽  
C. E. Coleman ◽  
J. W. Bowden ◽  
M. Hayashi

Three-dimensional scans of residual stress within intact weldments provide insight into the consequences of various welding techniques and stress-relieving procedures. The neutron diffraction method for nondestructive evaluation of residual stresses has been applied to a circumferential weld in a ferritic steel pipe of outer diameter 114 mm and thickness 8.6 mm. The maximum tensile stresses, 250 MPa in the hoop direction, are found at mid-thickness of the fusion zone. The residual stresses approach zero within 20 mm from the weld center. The residual stresses caused by welding zirconium alloy components are partially to blame for failures due to delayed hydride cracking. Neutron diffraction measurements in a GTA-welded Zr-2.5Nb plate have shown that heat treatment at 530°C for 1 h reduces the longitudinal residual strain by 60 percent. Neutron diffraction has also been used to scan the residual stresses near circumferential electron beam welds in irradiated and unirradiated Zr-2.5Nb pressure tubes. The residual stresses due to electron beam welding appear to be lower than 130 MPa, even in the as-welded state. No significant changes occur in the residual stress pattern of the electron-beam welded tube, during a prolonged exposure to thermal neutrons and the temperatures typical of an operating nuclear reactor.


Author(s):  
Francis H. Ku ◽  
Pete C. Riccardella

This paper presents a fast finite element analysis (FEA) model to efficiently predict the residual stresses in a feeder elbow in a CANDU nuclear reactor coolant system throughout the various stages of the manufacturing and welding processes, including elbow forming, Grayloc hub weld, and weld overlay application. The finite element (FE) method employs optimized FEA procedure along with three-dimensional (3-D) elastic-plastic technology and large deformation capability to predict the residual stresses due to the feeder forming and various welding processes. The results demonstrate that the fast FEA method captures the residual stress trends with acceptable accuracy and, hence, provides an efficient and practical tool for performing complicated parametric 3-D weld residual stress studies.


2020 ◽  
Vol 1012 ◽  
pp. 349-353
Author(s):  
D.B. Colaço ◽  
M.A. Ribeiro ◽  
T.M. Maciel ◽  
R.H.F. de Melo

The demand for lighter materials with suitable mechanical properties and a high resistance to corrosion has been increasing in the industries. Therefore, aluminum appears as an alternative due to its set of properties. The aim of this work was to evaluate residual stress levels and mechanical properties of welded joints of Aluminum-Magnesium alloy AA 5083-O using the Friction Stir Welding process. For mechanical characterization were performed a uniaxial tensile test, Vickers hardness, bending test and, finally, the determination of residual stresses. It was concluded that welding by FSW process with an angle of inclination of the tool at 3o, established better results due to better mixing of materials. The best results of tensile strength and a lower level of residual stresses were obtained using a tool rotation speed of 340 RPM with welding advance speed of 180 mm/min and 70 mm/min.


2009 ◽  
Vol 419-420 ◽  
pp. 433-436 ◽  
Author(s):  
Yu Jie Sun ◽  
Yong Zang ◽  
Qing Yu Shi

A sequential coupled three-dimensional thermo-mechanical analysis was conducted first to simulate friction stir welding (FSW) of aluminum alloy. In thermal analysis, the model included adaptive heat source, contact heat transfer both between work piece and clamps and between work piece and backing board etc; in the mechanical analysis, the model involved contact interaction both between work piece and clamps and between work piece and backing board, mechanical load of tool etc. The simulation results indicate that the longitudinal residual stress is unsymmetrical about weld centerline; the magnitude of longitudinal residual stress for FSW process is lower than that for fusion welding process. Based on simulated results of FSW process, a three-dimensional elastic-plastic analysis was then carried out to simulate rolling process, the simulation result show that rolling process not only causes a marked reduction in the longitudinal tensile residual but also reverse the sign of the longitudinal residual stress.


Author(s):  
Francis H. Ku ◽  
Trevor G. Hicks ◽  
William R. Mabe ◽  
Jason R. Miller

Two-dimensional (2D) and three-dimensional (3D) weld-induced residual stress finite element analyses have been performed for 2-inch Schedule 80 Type-304 stainless steel pipe sections joined by a multi-layer segmented-bead pipe weld. The analyses investigate the similarities and differences between the two modeling approaches in terms of residual stresses and axial shrinkage induced by the pipe weld. The 2D analyses are of axisymmetric behavior and evaluate two different pipe end constraints, namely fixed-fixed and fixed-free, while the 3D analysis approximates the non-axisymmetric segmented welding expected in production, with fixed-free pipe end constraints. Based on the results presented, the following conclusions can be drawn. The welding temperature contour results between the 2D and 3D analyses are very similar. Only the 3D analysis is capable of simulating the non-axisymmetric behavior of the segmented welding technique. The 2D analyses yield similar hoop residual stresses to the 3D analysis, and closely capture the maximum and minimum ID surface hoop residual stresses from the 3D analysis. The primary difference in ID surface residual stresses between the 2D fixed-fixed and 2D fixed-free constraints cases is the higher tensile axial stresses in the pipe outside of the weld region. The 2D analyses under-predict the maximum axial residual stress compared to the 3D analysis. The 2D ID surface residual stress results tend to bound the averaged 3D results. 2D axisymmetric modeling tends to significantly under-predict weld shrinkage. Axial weld shrinkage from 3D modeling is of the same magnitude as values measured in the laboratory on a prototypic mockup.


2011 ◽  
Vol 291-294 ◽  
pp. 958-963
Author(s):  
Li Jie Cao

The residual stress fields can have strong influences on the integrity and performance of friction stir welded aluminum alloy structure, comprehensive insight into the residual stress distribution is the key to the Friction stir welding (FSW) engineering application for a wide range of materials and thicknesses improving the weld strength and fatigue life. In this paper, the current state of the residual stresses in the FSW aluminum alloy joints is reviewed, The focus is on recent advances of experimental research, the results of numerical simulation analysis, and the effects of the technological parameters(welding speed, rotational speed, shoulder geometry et al.) on residual stress fields was evaluated. In the end, The controlling technique of residual stresses from published literatures is summarized.


Author(s):  
Yashar Javadi ◽  
Mohammadreza Hadizadeh Raeisi ◽  
Hamed Salimi Pirzaman ◽  
Mehdi Ahmadi Najafabadi

When a material is under mechanical load, the stresses change the velocity of acoustic waves because of acoustoelastic effect. This property can be employed for stress measurement in the material itself when the stress concerns the surface of the material, or in the bulk material. This technique involves with critically refracted longitudinal waves that propagate parallel to the surface, i. e. LCR waves. This paper presents a three dimensional thermo-mechanical analysis to evaluate welding residual stresses in plate-plate joint of AISI stainless steel 304L. After finite element simulation, the residual stresses were evaluated by LCR ultrasonic waves. This paper introduces a combination of “Finite Element Welding Simulation” and “Ultrasonic Stress Measurement using the LCR Wave” which is called as “FELcr”. The capabilities of FELCR in residual stress measurement are confirmed here. It has been shown that predicted residual stress from three dimensional FE analyses is in reasonable agreement with measured residual stress from LCR method.


Sign in / Sign up

Export Citation Format

Share Document