Design for Fixturability (DFF) Methodology for Commodity Parts: A Case Study With Connecting Rod Designs

2002 ◽  
Vol 2 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Khurshid A. Qureshi ◽  
Kazuhiro Saitou

This paper presents a methodology called ‘Design for Fixturability’ (DFF). This methodology enables designers to perform manufacturability analysis of their product designs upfront into the design process. The DFF approach provides a mapping between parametric representation of a part design and fixturing capability of a facility and presents a methodology to evaluate the design with respect to the fixturing capabilities. The methodology is applicable to the mass-production commodity parts and part families, which typically require dedicated manufacturing facilities. A prototype DFF system for connecting rods of an automotive engine is developed. The system enables the designers to design the connecting rods by considering the fixturing (datums) capabilities of existing manufacturing facilities during the concept design stage, when design parameters are still not frozen. The DFF system analyzes the design with respect to fixturing capabilities of facilities and generates suggestions for the designer, to modify his design if required.

Author(s):  
Khurshid A. Qureshi ◽  
Kazuhiro Saitou

Abstract This paper introduces a new methodology called ‘Design for Facility over Internet (DFF)’. This methodology provides an Internet-based environment for designers to perform manufacturability analysis of product designs with respect to the capabilities of existing manufacturing facilities, upfront into the design process. In the current work, only fixturing (machining datums) capabilities of a manufacturing facility are considered. A prototype DFF system for an automotive connecting rod, is developed. The system enables the designers to design the connecting rods by considering the fixturing (datums) capabilities of existing manufacturing facilities upfront at the concept design stage. The complete system implementation will also enable the manufacturers of connecting rods to create and update the database of their capabilities over the Internet. The DFF system analyzes the parametric design with respect to the fixturing capabilities and generates suggestions for a designer, to modify his design if required, to fit the capabilities of specified facilities.


2018 ◽  
Vol 223 ◽  
pp. 01003 ◽  
Author(s):  
Luca Gualtieri ◽  
Erwin Rauch ◽  
Rafael Rojas ◽  
Renato Vidoni ◽  
Dominik T. Matt

In the context of the Industry 4.0 wave, which is currently making its way into production engineering research, human robot collaboration is also a very important topic. With new technologies and ever more intelligent control systems for machines and robots, the cooperation between human and machine has become easier. In the smart factory of the future, robots are working hand in hand with people and support them, when their assistance is needed. However, the implementation of such collaborative human-robot workplaces is not so easy in practice. The design of collaborative workplaces also presents completely new challenges in terms of safety of the worker. Such a complex problem requires a systematic and structured approach for concept design, in order to avoid loops in the design stage or even worse during implementation. The research team therefore uses a laboratory case study to show how Axiomatic Design can be used as a method to design collaborative human-robot workstations. First, functional requirements for such workplaces are defined. Based on the functional requirements, the design parameters are derived by using the Axiomatic Design mapping and decomposition process. The result is a concept study for a collaborative workplace in the laboratory environment based on Axiomatic Design.


Author(s):  
W Dunsmore ◽  
G Pitts ◽  
S M Lewis ◽  
C J Sexton ◽  
C P Please ◽  
...  

This paper considers robust product design applied to mechanical systems via computer-based models at the detail design stage. This involves the efficient use of computer-based experiments to understand how product performance, both its mean and variability, depends on the design parameters. The integration of the general concepts and practical tools is described in terms of the design process, with the aim of making the techniques accessible to designers in an industrial context. The approach is motivated from a design for quality standpoint and is directed principally at improving functional reliability, while addressing issues of performance and cost. The approach is illustrated using a case study on the robust design of a cam mechanism.


Author(s):  
Jin Chul Yun ◽  
Seong Jin Park

In this study, a representative volume element (RVE) homogenization approach is proposed to predict the mechanical properties of a lithium-ion battery (LIB) cell, module, and pack in an electric vehicle (EV). Different RVE models for the LIB jellyroll and module are suggested. Various elastic properties obtained from RVE analyses were compared to the analytic solution. To validate the approach suggested, the elastic responses of two types of homogenized LIB module for various loading cases were compared to the model where all the jellyroll and module components were described fully. Additionally, parametric studies were conducted to determine the relationship between design parameters of the jellyroll components and the elastic behavior of LIB jellyroll and module. The results obtained in this study provide useful information for both LIB cell developers, at the concept design stage, and engineers of electric vehicles who want to predict the mechanical safety of a battery pack.


Author(s):  
Koji Ishikawa ◽  
Takahiro Miki ◽  
Hiroki Mamiya ◽  
Q. Yu

This paper discusses a new structural optimization methodology for MEMS and its application to reliability evaluation of micro relays. Clarifying the relationship between system characteristics and design factors, our new design optimization method (called MESA) enables numerical evaluation of MEMS structures at the concept design stage. The relation is defined as sensitivity, which is calculated based on the system governing equations with an experimental method technique and a FEM analysis. The sensitivities show not only the effect of design parameters for the system performances but also the system tradeoffs. The MESA allows designers to obtain “rough” total system performance and create a new concept. The MESA is successfully applied to evaluate an electrostatic microrelay for DC/RF signal switching. With the aid of the MESA, we define existing problems of current cantilever-shape MEMS switches and propose new mechanical approaches in order to enhance the mechanical reliability. The MESA clearly shows us that there are tradeoffs in the switching phenomenon of cantilever microrelay. Based on the MESA information, a new switching concept, which has tri-state multi-finger lateral contacts, is established and the MEMS structure is designed and fabricated. The tri-state switching concept reduces the number of contacts and also disperses the impact energy, which aggravates adhesion. In addition, bi-electrostatic actuators increase the adverse force to prevent stiction without the increase of restoring force, which causes degradation or cracks of the contact surfaces. Furthermore, a new push-pull switching structure is designed as a second generation by means of the MESA. The MESA shows that the second concept will provide superior mechanical performance with keeping the high RF isolation.


2021 ◽  
Vol 13 (18) ◽  
pp. 10313
Author(s):  
Cansu Iraz Seyrek ◽  
Barbara Widera ◽  
Agata Woźniczka

Constant challenges, environmental threats, and rapid changes of living conditions on the earth make it necessary to seriously take up the topic of resilience and sustainability. The interdisciplinary and holistic approach is more important than ever before, and engineering science is required to adapt to global conditions. This article presents the results of research aimed at the identification of sustainability-related parameters for kinetic green façades in the preliminary design phase and evaluation of current decision support tools. The authors carried out the comparative analysis of existing decision support methods and tools for sustainable development, used in fields and disciplines such as architectural design, environmental engineering, and structural design. The particular focus of the research was on the preliminary concept design of kinetic green façades. Specific methods such as forecasting and backcasting linked to post-occupancy evaluation tools were also taken into account. Parametric modeling based on optimization algorithms was recognized as the most adequate method. As a result of the conducted research, the steps to be taken at the early design stage for sustainable façade design were identified based on the example of the innovative system of kinetic green façade. The first step is to determine the design criteria of the façade considering the factors related to climate, culture, environment, and special design requirements. In the next step, the design parameters of the façade system are defined depending on the aforementioned criteria. In the third step, system design and modeling are done. Finally, the performance of the façade system is evaluated. If the desired performance is not achieved, the designer returns to the 2nd and 3rd steps. These last three steps of the preliminary design stage of sustainable façade systems are critical since they allow us for the façade design optimization, which in turn has a significant influence on the whole building performance and sustainability parameters.


2021 ◽  
Vol 8 ◽  
Author(s):  
Peng Zhang ◽  
Chunyi Cui ◽  
Chaoji Li ◽  
Cheng Zhang ◽  
Hailong Liu

Even though the energy piles have been applied for the bridge deicing system, the traditional design approach is commonly a single-domain and objective-oriented method and is consequently lacking means to comprehensively consider all the relevant factors, such as life-cycle cost, investment payback cycle, carbon emissions, etc. This paper presents a holistic design scheme for the energy pile deicing system of bridge decks. In this paper, a holistic designing tool, namely, OntoBDDS, was developed based on ontology method and SWRL rules. It can automatically provide financial, safety, and heat flux information for designers to evaluate and optimize the design scheme of a deicing system in the early design stage of a bridge. After semantic and syntactical validation of the OntoBDDS system, a case study was also conducted to demonstrate how to leverage knowledge query to provide a series of design alternatives autonomously through considering different design parameters. This case study also verified the practicability and feasibility of the OntoBDDS holistic decision-making system and indicated its potential to be applied for other engineering problems when dealing with multiobjective holistic design making.


1987 ◽  
Vol 19 (8) ◽  
pp. 75-86 ◽  
Author(s):  
S. P. Amaral

The technology of treatment through landfarming for oily wastes has been more and more often utilized in Brazil, always successfully. The definition, the processes which occur, as well as the factors which affect its performance are herein presented. Design parameters, such as location, ground characterization, dimensioning of the area of application, groundwater protection, drainage, treatment of surface runoff water and percolated liquid, among others, are presented. Operational procedures and quality monitoring of effluents and environment are also described. PETROBRÁS is already operating two landfarming systems and has several others in the design stage. We present data from these projects and report that oily waste degradation has been achieved in around six months. Finally, we expect to be contributing to the affirmation and development of this technology in our Country.


Sign in / Sign up

Export Citation Format

Share Document