Stability Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness

2002 ◽  
Vol 125 (1) ◽  
pp. 91-101 ◽  
Author(s):  
G. H. Jang ◽  
S. W. Jeong

This research presents an analytical model to investigate the stability due to the ball bearing waviness in a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu’s equation, because the stiffness coefficients have time-varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill’s infinite determinant for these algebraic equations. The validity of this research is proven by comparing the stability chart with the time responses of the vibration model suggested by prior research. This research shows that the waviness in the ball bearing generates the time-varying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 i=1,2,3,….

2003 ◽  
Vol 125 (2) ◽  
pp. 291-300 ◽  
Author(s):  
G. H. Jang ◽  
J. W. Yoon

This paper presents an analytical method to investigate the stability of a hydrodynamic journal bearing with rotating herringbone grooves. The dynamic coefficients of the hydrodynamic journal bearing are calculated using the FEM and the perturbation method. The linear equations of motion can be represented as a parametrically excited system because the dynamic coefficients have time-varying components due to the rotating grooves, even in the steady state. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving Hill’s infinite determinant of these algebraic equations. The validity of this research is proved by the comparison of the stability chart with the time response of the whirl radius obtained from the equations of motion. This research shows that the instability of the hydrodynamic journal bearing with rotating herringbone grooves increases with increasing eccentricity and with decreasing groove number, which play the major roles in increasing the average and variation of stiffness coefficients, respectively. It also shows that a high rotational speed is another source of instability by increasing the stiffness coefficients without changing the damping coefficients.


Author(s):  
M. H. Lee ◽  
J. H. Lee ◽  
G. H. Jang

A rotor supported by fluid dynamic bearings (FDBs) has a whirling motion by centrifugal force due to the mass unbalance or by the flexibility of shaft. This whirling motion also generates periodic time-varying oil-film reaction and dynamic coefficients even in case of the stationary grooved FDBs. This paper proposes a method to determine the stability of a whirling rotor supported by stationary grooved FDBs considering five degrees of freedom of a general rotor-bearing system. Dynamic coefficients are calculated by using the finite element method and the perturbation method, and they are represented as periodic harmonic functions by considering whirling motion. Because of the periodic time-varying dynamic coefficients, the equations of motion of the rotor supported by FDBs can be represented as a parametrically excited system. The solution of the equations of motion can be assumed as the Fourier series so that the equations of motion can be rewritten as simultaneous algebraic equations with respect to the Fourier coefficients. Hill’s infinite determinant is calculated by using these algebraic equations in order to determine the stability. The stability of the FDBs decreases with the increase of rotational speed. The stability of the FDBs increases with the increase of whirl radius, because the average and variation of Cxx increase faster than those of Kxx. The proposed method is verified by solving the equations of motion by using the forth Runge-Kutta method to determine the convergence and divergence of whirl radius.


Author(s):  
B J Gallacher ◽  
J S Burdess

This paper investigates the application of parametric excitation to a resonant microelectromechanical systems (MEMS) gyroscope. The modal equations of motion of an electrostatically actuated ring are derived and shown to be coupled via the electrostatic stiffness. Such electrostatic coupling between in-plane modes of vibration permits parametric instabilities that may be exploited in a novel excitation scheme. A multiple time scale perturbation method is used to analyse the response of the ring gyroscope to the combination parametric excitations with the principal objective of separating the drive and response frequencies of the ring gyroscope. As pairs of flexural modes of the perfect ring are degenerate, the combination excitation between distinct modes demand the ring to be analysed as a four degree of freedom system. Slight mis-tuning between the otherwise degenerate modes is incorporated in the perturbation analysis. The results of the perturbation analysis are subsequently used to determine the stability boundaries for a typical ring gyroscope when excited using a sum combination resonance between the flexural modes of order 2 and 5. In this case, the ratio of the drive and response frequencies is approximately 10:1. Drive and sense configurations that enable effective parametric excitation of a desired mode are investigated. Simulation of the oscillator scheme is achieved using MATLAB Simulink and this validates the perturbation analysis. Agreement between the models within 10 per cent is demonstrated.


2013 ◽  
Vol 392 ◽  
pp. 156-160
Author(s):  
Ju Seok Kang

Multibody dynamics analysis is advantageous in that it uses real dimensions and design parameters. In this study, the stability analysis of a railway vehicle based on multibody dynamics analysis is presented. The equations for the contact points and contact forces between the wheel and the rail are derived using a wheelset model. The dynamics equations of the wheelset are combined with the dynamics equations of the other parts of the railway vehicle, which are obtained by general multibody dynamics analysis. The equations of motion of the railway vehicle are linearized by using the perturbation method. The eigenvalues of these linear dynamics equations are calculated and the critical speed is found.


1999 ◽  
Vol 121 (4) ◽  
pp. 594-598 ◽  
Author(s):  
V. Radisavljevic ◽  
H. Baruh

A feedback control law is developed for dynamical systems described by constrained generalized coordinates. For certain complex dynamical systems, it is more desirable to develop the mathematical model using more general coordinates then degrees of freedom which leads to differential-algebraic equations of motion. Research in the last few decades has led to several advances in the treatment and in obtaining the solution of differential-algebraic equations. We take advantage of these advances and introduce the differential-algebraic equations and dependent generalized coordinate formulation to control. A tracking feedback control law is designed based on a pointwise-optimal formulation. The stability of pointwise optimal control law is examined.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2408
Author(s):  
Fanjie Li ◽  
Xiaopeng Li ◽  
Dongyang Shang

To study the vibration characteristics of deep-groove ball bearing, considering the influence of sliding, the dynamic model of the DGB 6205 system is established in this paper. The DGB 6205 system model includes the movement of the bearing inner ring in the X and Y directions, the rotation of the cage, the rotation movement of each ball, the revolution movement of each ball and the movement along the radial direction of each ball. Based on the system model, the differential equations of motion of the system are established, and the correctness of the model is verified by experiment. The slip characteristics of the DGB 6205 system are studied by numerical simulation. At the same time, the influence of time-varying load on the vibration characteristics of the system is studied. Then, the sensitivity of system parameters is analyzed. The results show that the sliding speed between the ball and the inner raceway is greater than that between the ball and the outer raceway. The radial vibration response of DGB 6205 system under time-varying load is less than that under constant load. The increase of radial clearance will increase the vibration response of DGB 6205 system.


1986 ◽  
Vol 108 (3) ◽  
pp. 206-214 ◽  
Author(s):  
D. A. Streit ◽  
C. M. Krousgrill ◽  
A. K. Bajaj

The governing equations of motion for the compliant coordinates describing a flexible manipulator performing repetitive tasks contain parametric excitation terms. The stability of the zero solution to these equations is investigated using Floquet theory. Analytical and numerical results are presented for a two-degree-of-freedom model of a manipulator with one prismatic joint and one revolute joint.


Author(s):  
Jose´ L. Escalona ◽  
Rosario Chamorro ◽  
Antonio M. Recuero

The stability analysis of railroad vehicles using eigenvalue analysis can provide essential information about the stability of the motion, ride quality or passengers comfort. The system eigenvalues are not in general a vehicle property but a property of a vehicle travelling steadily on a periodic track. Therefore the eigenvalue analysis follows three steps: calculation of steady motion, linearization of the equations of motion and eigenvalue calculation. This paper deals with different numerical methods that can be used for the eigenvalue analysis of multibody models of railroad vehicles that can include deformable tracks. Depending on the degree of nonlinearity of the model, coordinate selection or the coordinate system used for the description of the motion, different methodologies are used in the eigenvalue analysis. A direct eigenvalue analysis is used to analyse the vehicle dynamics from the differential-algebraic equations of motion written in terms of a set of constrained coordinates. In this case not all the obtained eigenvalues are related to the dynamics of the system. As an alternative the equations of motion can be obtained in terms of independent coordinates taking the form of ordinary differential equations. This procedure requires more computations but the interpretation of the results is straightforward.


1963 ◽  
Vol 30 (4) ◽  
pp. 547-554 ◽  
Author(s):  
V. Chobotov

The gravity-gradient excitation of a whirling cable-counterweight space station in orbit is investigated. The Lagrange’s equations of motion for transverse oscillations of the system are derived and shown to be of the Mathieu type. A few representative cases are investigated analytically and on an IBM 7090 computer. The stability criteria for the axial vibrations are also considered and shown to be of the same kind as those for the transver se vibrations of the cable. Viscous damping is included in the analyses and found to be effective and essential for prevention of parametric excitation instability of the system.


Author(s):  
S Ganesan ◽  
C Padmanabhan

A flexible diaphragm coupling, connecting two rotating shafts, is investigated for its dynamic characteristics, when subjected to parallel offset misalignment. The diaphragm coupling is a constant velocity coupling which becomes asymmetric once misaligned. Asymmetry creates directional difference or spatial variation of stiffness, as shown by a quasi-static finite element (FE) analysis using ABAQUS software. As the shafts rotate, this spatial variation in stiffness makes the diaphragm coupling–rotor system model to become time-varying. The time-varying direct and cross–coupled stiffness terms of the coupling are synthesized from the FE model and used in the governing equations of motion of the coupling–rotor system. This leads to a parametrically excited system due to the time-periodic stiffness coefficients of the coupling. Using Simulink, numerical integration has been performed to find the response of the system for both mass unbalance and inclination unbalance excitations that arise due to the tilt of the principal axes of the diaphragm due to parallel misalignment. The responses obtained clearly indicate the effect of parametric excitation at one-fourth, one-third, and one-half of the principal parametric resonance. To verify this model, an experimental setup has been developed for the coupling–rotor system model with misalignment. The experimental results clearly show the asymmetry between the two lateral direction responses, as predicted by the model.


Sign in / Sign up

Export Citation Format

Share Document