A Numerical Investigation of the Flow Mechanisms in a High Pressure Compressor Front Stage With Axial Slots

2004 ◽  
Vol 126 (3) ◽  
pp. 339-349 ◽  
Author(s):  
Ingo Wilke ◽  
Hans-Peter Kau

This paper describes the impact of axial slots on the flow field in a transonic rotor blade row. The presented results are completely based on time-accurate three-dimensional numerical simulations of a high pressure compressor front stage with and without casing treatment. Two different axial positions of a casing treatment consisting of axial slots were tested for their impact on flow stability and efficiency. The first tested position (configuration 1) was chosen in a conventional way. The slots extend approximately from the leading up to the trailing edge of the rotor blades. As expected, the simulations of the compressor stage with this configuration showed a significant increase in flow stability near surge compared to the solid wall case. However, a non-negligible decrease in efficiency is also observed. Analyses of flow interactions between casing treatment and rotor blade rows under transonic conditions lead to the general conclusion that the stabilizing effect of circumferential grooves or axial slots mainly results from their impact on the tip leakage flow and its resulting vortex. A characteristic vortex inside the slots is observed in the simulations with the conventionally positioned casing treatment. This vortex removes fluid out of downstream parts of the blade passage and feeds it back into the main flow further upstream. The resulting impact on the tip leakage flow is responsible for the increased flow stability. However, the interaction between the configuration 1 casing treatment flow and the blade passage flow results in a significant relocation of the blade passage shock in the downstream direction. This fact is a main explanation for the observed decrease in compressor efficiency. A second slot position (configuration 2) was tested with the objective to improve compressor efficiency. The casing treatment was shifted upstream, so that only 25% of the blade chord remained under the slots. The simulations carried out demonstrate that this shift positively affects the resulting efficiency, but maintains the increased level of flow stability. A time-accurate analysis of the flow shows clearly that the modified casing treatment stabilizes the tip leakage vortex and reduces the influence on the flow inside the blade passage.

Author(s):  
I. Wilke ◽  
H.-P. Kau

This paper describes the impact of axial slots on the flow field in a transonic rotor blade row. The presented results are completely based on time-accurate 3-dimensional numerical simulations of a high pressure compressor front stage with and without casing treatment. Two different axial positions of a casing treatment consisting of axial slots were tested for their impact on flow stability and efficiency. The first tested position (configuration 1) was chosen in a conventional way. The slots extend approximately from the leading up to the trailing edge of the rotor blades. As expected, the simulations of the compressor stage with this configuration showed a significant increase in flow stability near surge compared to the solid wall case. However, a non negligible decrease in efficiency is also observed. Analyses of flow interactions between casing treatment and rotor blade rows under transonic conditions lead to the general conclusion that the stabilizing effect of circumferential grooves or axial slots mainly results from their impact on the tip leakage flow and its resulting vortex. A characteristic vortex inside the slots is observed in the simulations with the conventionally positioned casing treatment. This vortex removes fluid out of downstream parts of the blade passage and feeds it back into the main flow further upstream. The resulting impact on the tip leakage flow is responsible for the increased flow stability. However, the interaction between the configuration 1 casing treatment flow and the blade passage flow results in a significant relocation of the blade passage shock in the downstream direction. This explains the observed decrease in compressor efficiency. A second slot position (configuration 2) was tested with the objective to improve compressor efficiency. The casing treatment was shifted upstream, so that only 25% of the blade chord remained under the slots. The simulations carried out demonstrate that this shift positively effects the resulting efficiency, but maintains the increased level of flow stability. A time-accurate analysis of the flow shows clearly that the modified casing treatment stabilizes the tip leakage vortex and reduces the influence on the flow inside the blade passage.


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Nicolas Gourdain ◽  
Fabien Wlassow ◽  
Xavier Ottavy

This paper describes the investigations performed to better understand unsteady flows that develop in a three-stage high-pressure compressor. More specifically, this study focuses on rotor-stator interactions and tip leakage flow effects on overall performance and aerodynamic stability. The investigation method is based on three-dimensional unsteady RANS simulations, considering the natural spatial periodicity of the compressor. Indeed, all information related to rotor-stator interactions can be computed. A comparison is first done with experimental measurements to outline the capacity of the numerical method to predict overall performance and unsteady flows. The results show that the simulation correctly estimates most flow features in the multistage compressor. Then numerical data obtained for three configurations of the same compressor are analyzed and compared. Configurations 1 and 2 consider two sets of tip clearance dimensions and a casing treatment based on a honeycomb design is applied for configuration 3. Detailed investigations of the flow at the same operating line show that the tip leakage flow is responsible for the loss of stability in the last stage. An increase by 30% of the tip clearance dimension dramatically reduces the stable operating range (by 40% with respect to the standard configuration). A modal analysis shows that the stall process in this case involves the perturbation of the flow in the last rotor by upstream stator wakes, leading to the development of a rotating instability. The control device designed and investigated in this study allows for reducing the sensitivity of the compressor to tip leakage flow by recovering the initial stable operating range.


Author(s):  
Julien Marty ◽  
William Riéra ◽  
Lionel Castillon

In the present study, several control devices have been investigated in the framework of a high pressure compressor rotor using RANS simulations. The analysis of performance maps and of flow predictions leads to select the injection device located up-stream of the rotor tip, at the shroud in order to control the tip leakage flow. The high loss levels are reduced and the radial and azimuthal extension of the high loss area is smaller. Then the chosen flow control technique has been simulated using URANS and ZDES with the IGV passing wakes. The injection technique reduces the loss area and level, energizing and stabilizing the tip leakage vortex thanks to high momentum. So the vortex disruption is removed or at least delayed. Moreover, the influence of IGV passing wakes is reduced.


Author(s):  
Jichao Li ◽  
Feng Lin ◽  
Sichen Wang ◽  
Juan Du ◽  
Chaoqun Nie ◽  
...  

Circumferential single-groove casing treatment becomes an interesting topic in recent few years, because it is a good tool to explore the interaction between the groove and the flow in blade tip region. The stall margin improvement (SMI) as a function of the axial groove location has been found for some compressors, such a trend cannot be predicted by steady high-fidelity CFD simulations. Recent efforts show that to catch such a trend, multi-passage, unsteady flow simulations are needed as the stalling mechanism itself involves cross-passage flows and unsteady dynamics. This indicates a need to validate unsteady numerical simulation results. In this paper, an extensive experimental study of a total of fifteen single casing grooves in a low-speed axial compressor rotor is presented, the groove location varies from 0.4% to 98.3% of axial tip chord are tested. The unsteady pressure data both at casing and at the blade wake with different groove locations are measured and processed, including the movement of trajectory of tip leakage flow, the evolution of unsteadiness of tip leakage flow (UTLF), the unsteady spectrum signature during the stall process, and the outlet unsteady flow characteristic along the span. These data provide a case study for validation of the unsteady CFD results, and may be helpful for further interpretation on the stalling mechanism affected by circumferential casing grooves.


2008 ◽  
Author(s):  
Md Hamidur Rahman ◽  
Sung In Kim ◽  
Ibrahim Hassan

Steady simulations have been performed to investigate tip leakage flow and heat transfer characteristics on the casing and rotor blade tip in a single stage turbine engine. A turbine stage of stator and rotor was modeled with a pressure ratio of 3.2. The predicted isentropic Mach number and adiabatic wall temperature on the casing showed good agreement with available experimental data. The effects of tip clearance height and rotor rotational speed on the blade tip and casing heat transfer characteristics are mainly considered. It is observed that the tip leakage flow structure is highly dependent on the height of the tip gap as well as speeds of the rotor blade. In all cases, flow separates just around the corner of the pressure side of the blade tip. The region of recirculating flow increases with the increase of the clearance height. Then the flow reattaches on the tip surface near the suction side beyond the flow separation. This flow reattachment enhances surface heat transfer. The leakage flow interaction with the reverse cross flow, induced by relative casing motion, is found to have significant effect on the blade tip and casing heat transfer distribution. Critical region of high heat transfer on the casing exists near the blade tip leading edge and along the pressure side edge at all clearance height. Whereas, at high speed rotation, it tends to move towards the trailing edge due to the change of inflow angle.


Author(s):  
Hao Sun ◽  
Jun Li ◽  
Zhenping Feng

The clearance between the rotor blade tip and casing wall in turbomachinery passages induces leakage flow loss and thus degrades aerodynamic performance of the machine. The flow field in turbomachinery is significantly influenced by the rotor blade tip clearance size. To investigate the effects of tip clearance size on the rotor-stator interaction, the turbine stage profile from Matsunuma’s experimental tests was adopted, and the unsteady flow fields with two tip clearance sizes of 0.67% and 2.00% of blade span was numerical simulated based on Harmonic method using NUMECA software. By comparing with the domain scaling method, the accuracy of the harmonic method was verified. The interaction mechanism between the stator wake and the leakage flow was investigated. It is found that the recirculation induced by the stator wake is separated by a significant “interaction line” from the flow field close to the suction side in the clearance region. The trend of the pressure fluctuation is contrary on both sides of the line. When the stator wakes pass by the suction side, the pressure field fluctuates and the intensity of the tip leakage flow varies. With the clearance size increasing, the “interaction line” is more far away from the suction side and the intensity of tip leakage flow also fluctuates more strongly.


Sign in / Sign up

Export Citation Format

Share Document