On the Thermal Performance Characteristics of Three-Dimensional Multichip Modules

2004 ◽  
Vol 126 (3) ◽  
pp. 374-383 ◽  
Author(s):  
Wen-Hwa Chen ◽  
Hsien-Chie Cheng ◽  
Chih-Han Lin

The study explores the thermal performance of three-dimensional (3-D), vertically stacked multi-chip modules (the so-called MCM-V) in natural convection through finite element (FE) modeling and experimental validation. A modified Infrared (IR) thermography-based thermal characterization (IRTTC) technique that integrates a 3-D heat conduction FE modeling and a two-phased IR thermography measurement process is proposed. In contrast to the conventional IRTTC technique (Chen et al. [1]), the technique can improve the resolution of the captured thermal images so as to attain better characterization of the chip junction temperature. The effectiveness of the proposed modified IRTTC technique is confirmed by means of the thermal test die (TTD) measurement. Furthermore, for facilitating subsequent parametric thermal design, a direct FE approach (DFEA) is also introduced. The DFEA simply incorporates existing empirical models for heat transfer (HT) coefficients to describe the surface heat transfer to the ambient through convection and radiation in the proposed heat conduction FE model. Through the modified IRTTC technique and the TTD measurement, the validity of the proposed FE modeling, including the proposed heat conduction FE model and the applied empirical models for HT coefficients, is verified. With the validated FE modeling, four different chip stacking structures of MCM-V packages, including the thick-die-attach, pyramid, cross and dummy-die types, are investigated. In addition, some essential design factors, affecting the thermal performance of the MCM-V, are also extensively explored through parametric FE study. Eventually, an extensive thermal design guideline is accordingly provided.

Author(s):  
Koji Nishi ◽  
Tomoyuki Hatakeyama ◽  
Shinji Nakagawa ◽  
Masaru Ishizuka

The thermal network method has a long history with thermal design of electronic equipment. In particular, a one-dimensional thermal network is useful to know the temperature and heat transfer rate along each heat transfer path. It also saves computation time and/or computation resources to obtain target temperature. However, unlike three-dimensional thermal simulation with fine pitch grids and a three-dimensional thermal network with sufficient numbers of nodes, a traditional one-dimensional thermal network cannot predict the temperature of a microprocessor silicon die hot spot with sufficient accuracy in a three-dimensional domain analysis. Therefore, this paper introduces a one-dimensional thermal network with average temperature nodes. Thermal resistance values need to be obtained to calculate target temperature in a thermal network. For this purpose, thermal resistance calculation methodology with simplified boundary conditions, which calculates thermal resistance values from an analytical solution, is also introduced in this paper. The effectiveness of the methodology is explored with a simple model of the microprocessor system. The calculated result by the methodology is compared to a three-dimensional heat conduction simulation result. It is found that the introduced technique matches the three-dimensional heat conduction simulation result well.


2018 ◽  
Vol 21 (8) ◽  
pp. 1286-1297 ◽  
Author(s):  
Antonio Gil ◽  
Andrés Omar Tiseira ◽  
Luis Miguel García-Cuevas ◽  
Tatiana Rodríguez Usaquén ◽  
Guillaume Mijotte

Each of the elements that make up the turbocharger has been gradually improved. In order to ensure that the system does not experience any mechanical failures or loss of efficiency, it is important to study which engine-operating conditions could produce the highest failing rate. Common failing conditions in turbochargers are mostly achieved due to oil contamination and high temperatures in the bearing system. Thermal management becomes increasingly important for the required engine performance. Therefore, it has become necessary to have accurate temperature and heat transfer models. Most thermal design and analysis codes need data for validation; often the data available fall outside the range of conditions the engine experiences in reality leading to the need to interpolate and extrapolate disproportionately. This article presents a fast three-dimensional heat transfer model for computing internal temperatures in the central housing for non-water cooled turbochargers and its direct validation with experimental data at different engine-operating conditions of speed and load. The presented model allows a detailed study of the temperature rise of the central housing, lubrication channels, and maximum level of temperature at different points of the bearing system of an automotive turbocharger. It will let to evaluate thermal damage done to the system itself and influences on the working fluid temperatures, which leads to oil coke formation that can affect the performance of the engine. Thermal heat transfer properties obtained from this model can be used to feed and improve a radial lumped model of heat transfer that predicts only local internal temperatures. Model validation is illustrated, and finally, the main results are discussed.


Author(s):  
Leila Choobineh ◽  
Dereje Agonafer ◽  
Ankur Jain

Heterogeneous integration in microelectronic systems using interposer technology has attracted significant research attention in the past few years. Interposer technology is based on stacking of several heterogeneous chips on a common carrier substrate, also referred to as the interposer. Compared to other technologies such as System-on-Chip (SoC) or System-in-Package (SiP), interposer-based integration offers several technological advantages. However, the thermal management of an interposer-based system is not well understood. The presence of multiple heat sources in various die and the interposer itself needs to be accounted for in any effective thermal model. While a finite-element based simulation may provide a reasonable temperature prediction tool, an analytical solution is highly desirable for understanding the fundamentals of the heat transfer process in interposers. In this paper, we describe our recent work on analytical modeling of heat transfer in interposer-based microelectronic systems. The basic governing energy conservation equations are solved to derive analytical expressions for the temperature distribution in an interposer-based microelectronic system. These solutions are combined with an iterative approach to provide the three-dimensional temperature field in an interposer. Results are in excellent agreement with finite-element solutions. The analytical model is utilized to study the effect of various parameters on the temperature field in an interposer system. Results from this work may be helpful in the thermal design of microelectronic systems containing interposers.


Author(s):  
Takeharu Misawa ◽  
Hiroyuki Yoshida ◽  
Hidesada Tamai ◽  
Kazuyuki Takase

The three-dimensional two-fluid model analysis code ACE-3D is developed in Japan Atomic Energy Agency for the thermal design procedure on two-phase flow thermal-hydraulics of light water-cooled reactors. In order to perform thermal hydraulic analysis of SCWR, ACE-3D is enhanced to supercritical pressure region. As a result, it is confirmed that transient change in subcritical and supercritical pressure region can be simulated smoothly using ACE-3D, that ACE-3D can predict the results of the past heat transfer experiment in the supercritical pressure condition, and that introduction of thermal conductivity effect of the wall restrains fluctuation of wall.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Sangbeom Cho ◽  
Yogendra Joshi

We develop a vapor chamber integrated with a microelectronic packaging substrate and characterize its heat transfer performance. A prototype of vapor chamber integrated printed circuit board (PCB) is fabricated through successful completion of the following tasks: patterning copper micropillar wick structures on PCB, mechanical design and fabrication of condenser, device sealing, and device vacuuming and charging with working fluid. Two prototype vapor chambers with distinct micropillar array designs are fabricated, and their thermal performance tested under various heat inputs supplied from a 2 mm × 2 mm heat source. Thermal performance of the device improves with heat inputs, with the maximum performance of ∼20% over copper plated PCB with the same thickness. A three-dimensional computational fluid dynamics/heat transfer (CFD/HT) numerical model of the vapor chamber, coupled with the conduction model of the packaging substrate is developed, and the results are compared with test data.


2015 ◽  
Author(s):  
Guillermo Soriano ◽  
Diego Siguenza

An analysis of thermal performance of a vertical Borehole Heat Exchanger (BHE) from a close loop Ground Source Heat Pump (GSHP) located in Guayaquil-Ecuador is presented. The project aims to assess the influence of using novels heat transfer fluids such as nanofluids, slurries with microencapsulated phase change materials and a mixture of both. The BHEs sensitive evaluation is performed by a mathematical model in a finite element analysis by using computational tools; where, the piping array is studied in one dimension scenario meanwhile its surroundings grout and ground volumes are presented as a three dimensional scheme. Therefore, an optimized model design can be achieved which would allow to study the feasibility of GSHP in buildings and industries in Guayaquil-Ecuador.


Author(s):  
Fadi A. Ghaith ◽  
Ahmed S. Izhar

This paper aims to enhance the thermal performance of an industrial shell-and-tube heat exchanger utilized for the purpose of cooling raw natural gas by means of mixture of Sales gas. The main objective of this work is to provide an optimum and reliable thermal design of a single-shelled finned tubes heat exchanger to replace the existing two- shell and tube heat exchanger due to the space limitations in the plant. A comprehensive thermal model was developed using the effectiveness-NTU method. The shell-side and tube-side overall heat transfer coefficient were determined using Bell-Delaware method and Dittus-Boelter correlation, respectively. The obtained results showed that the required area to provide a thermal duty of 1.4 MW is about 1132 m2 with tube-side and shell-side heat transfer coefficients of 950 W/m2K and 495 W/m2K, respectively. In order to verify the obtained results generated from the mathematical model, a numerical study was carried out using HTRI software which showed a good match in terms of the heat transfer area and the tube-side heat transfer coefficient.


2011 ◽  
Vol 492 ◽  
pp. 328-332 ◽  
Author(s):  
Zhi Ming Han ◽  
Yi Wang Bao ◽  
Wei Dong Wu ◽  
Zheng Quan Liu ◽  
Xiao Gen Liu ◽  
...  

Simulation analysis of thermal performance for vacuum glazing was conducted in this paper. The heat conduction through the support pillars and edge seal and the radiation between two glass sheets were considered. The heat conductance of residual gas in vacuum gap was ignored for a low pressure of less than 0.1Pa. Two pieces of vacuum glazing with sizes of 0.3 × 0.3 m and 1.0 × 1.0 m were simulated. In order to check the accuracy of simulations with specified mesh number, the thermal performance of a small central area (4mm×4mm) with a single pillar in the center was simulated using a graded mesh of 41×41×5 nodes. The heat transfer coefficients of this unit obtained from simulation and analytic prediction were 2.194Wm-2K-1and 2.257Wm-2K-1respectively, with a deviation of 2.79%. The three dimensional (3D) isotherms and two dimensional (2D) isotherms on the cold and hot surfaces of the specimens were also presented. For a validity of simulated results, a guarded hot box calorimeter was used to determine the experimental thermal performance of 1.0m×1.0m vacuum glazing. The overall heat transfer coefficients obtained from experiment and simulation were 2.55Wm-2K-1 and 2.47Wm-2K-1respectively, with a deviation of 3.14%.


Sign in / Sign up

Export Citation Format

Share Document