Effect of the Inlet Geometry on the Flow in a Cylindrical Cyclone Separator

2006 ◽  
Vol 128 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Ferhat M. Erdal ◽  
Siamack A. Shirazi

The use of Gas-Liquid Cylindrical Cyclone (GLLC©) separators for gas-liquid separation is a new technology for oil and gas industry. Consequently, it is important to understand the flow behavior in the GLLC© and the effect of different geometrical geometries to enhance separation. The main objective of this study is to address the effect of different inlet geometries on the flow behavior in the GLLC© by measuring velocity components and the sum of the axial and tangential velocity fluctuations inside the GLLC© using a Laser Doppler Velocimeter (LDV). Three different inlet geometries were considered, namely, one inclined inlet, two inclined inlets, and a gradually reduced inlet nozzle. Axial and tangential velocities and turbulent intensities across the GLLC© diameter were measured at 24 different axial locations (318-900mm below the inlet) for each inlet geometry. Flow rates of 0.00454 and 0.00063m3∕s were selected to investigate the effect of flowrate (Reynolds number) on the flow behavior. Color contour maps color contour plots of axial and tangential velocity and the sum of the axial and tangential velocity fluctuations revealed some remarkable details of the flow behavior.

Author(s):  
Ferhat M. Erdal ◽  
Siamack A. Shirazi

The use of Gas-Liquid Cylindrical Cyclone (GLCC©) separators for gas-liquid separation is a new technology for oil and gas industry. Consequently, it is important to understand the flow behavior in the GLCC© and effect of different geometrical configurations to enhance separation. The main objective of this study is to address the effect of different inlet configurations on flow behavior in the GLCC© by measuring velocity components and turbulent kinetic energy inside the GLCC© using a Laser Doppler Velocimeter (LDV). Three different inlet configurations are constructed, namely: one inclined inlet, two inclined inlets and a gradually reduced inlet nozzle. Axial and tangential velocities and turbulent intensities across the GLCC© diameter were measured at 24 different axial locations (12.5” to 35.4” below the inlet) for each inlet configuration. Flow rates of 72 and 10 gpm are selected to investigate the effect of flowrate (Reynolds number) on the flow behavior. Measurements are used to create color contour plots of axial and tangential velocity and turbulent kinetic energy. Color contour maps revealed details of the flow behavior.


Author(s):  
Ho Minh Kha ◽  
Nguyen Thanh Nam ◽  
Vo Tuyen ◽  
Nguyen Tan Ken

The gas-liquid cylindrical cyclone (GLCC) separators is a fairly new technology for the oil and gas industry. The current GLCC separator, a potential alternative for the conventional one, was studied, developed, and patented by Chevron company and Tulsa University (USA). It is used for replacing the traditional separators that have been used over the last 100 years. In addition, it is significantly attracted to petroleum companies in recent years because of the effect of the oil world price. However, the behavior of phases in the instrument is very rapid, complex, and unsteady, which may cause the difficulty of enhancing the performance of the separation phases. The multiple recent research shows that the inlet geometry is probably the most critical element that influences directly to the performance of separation of phases. Though, so far, most of the studies of GLCC separator were limited with the one inlet model. The main target of the current study is to deeply understand the effect of different geometrical configurations of the circular inlet on performances of GLCC by the experimental method for two phases flow (gas-liquid). Two different inlet configurations are constructed, namely: One circular inlet and two symmetric circular inlets. As a result, we propose the use of two symmetric circular inlets to enhance separator efficiency because of their effects.


Author(s):  
Ferhat M. Erdal ◽  
Siamack A. Shirazi

Abstract Local measurements and 3-D CFD simulations in Gas-Liquid cylindrical Cyclone (GLCC©) separators are scarce. The main objective of this study is to conduct local measurements and 3-D CFD simulations to understand the swirling flow behavior in a cylindrical cyclone with one inclined tangential inlet. Axial and tangential velocities and turbulent intensities across the GLCC© diameter were measured at 24 different axial locations (12.5″ to 35.4″ below the inlet) by using a Laser Doppler Velocimeter (LDV). The liquid flow rate was 72GPM, which corresponds to an average axial velocity of 0.732 m/s and Reynolds number of 66,900. Measurements are used to create color contour plots of axial and tangential velocity and turbulent kinetic energy. Color contour maps revealed details of the flow behavior. Additionally, 3-D CFD simulations with different turbulence models are conducted. Simulations results are compared to LDV measurements.


2004 ◽  
Vol 126 (4) ◽  
pp. 326-333 ◽  
Author(s):  
Ferhat M. Erdal ◽  
Siamack A. Shirazi

Local measurements and 3D CFD simulations in gas-liquid cylindrical cyclone separators are scarce. The main objective of this study is to conduct local measurements and 3D CFD simulations to understand the swirling flow behavior in a cylindrical cyclone with one inclined tangential inlet. Axial and tangential velocities and turbulent kinetic energy across the cylinder diameter ID=0.089m were measured at 24 different axial locations (0.32–0.90 m below the inlet) by using a laser Doppler velocimeter (LDV). The liquid flow rate was 16.4m3/h, which corresponds to an average axial velocity of 0.732 m/s and Reynolds number of 66,900. Measurements are used to create color contour plots of axial and tangential velocity and turbulent kinetic energy. Color contour maps revealed details of the flow behavior. Additionally, 3D CFD simulations with different turbulence models are conducted. Simulations results are compared to LDV measurements.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 515-528
Author(s):  
Ruby Roberts ◽  
Rhona Flin

Summary To maximize the opportunities for the adoption of newly developed products, there is a need to better understand how psychological factors have an impact on the acceptance and deployment of innovative technology in industry. While there is extensive general literature on the psychological factors that influence consumer behavior and the use of new technologies, there seemed to be very limited understanding of this topic, specifically relating to the upstream energy sector. A literature review was conducted to (1) identify what, if any, research has been conducted in relation to the psychological factors influencing technology adoption and deployment in the oil and gas (O&G) industry and (2) identify what interventions have been developed to support technology adoption in O&G. A literature search was undertaken, and given the limited research anticipated, minimum selection criteria were applied on the basis of Cochrane quality control (Higgins and Green 2011). In the 17 articles that met the search criteria, there was limited discussion of the psychological factors that have an impact on O&G technology adoption. The articles were subject to Braun and Clarke (2006) thematic analysis, producing a list of psychological factors that influence technology adoption in O&G. Only five psychological factors were identified: personality (e.g., exploration traits and risk aversion), attitude (e.g., trust and not-invented-here syndrome), social (e.g., social norms), cognition (e.g., risk perception), and psychological factors at an organizational level (leadership and organizational culture). In addition, our review identified a small number of interventions that were developed and deployed to support technology adoption in O&G. Given the early stages of this research area, combined with the relevance for technology innovation in upstream O&G, our review adds to the literature by identifying an initial framework of the key psychological factors. This essential set of factors can be used to direct future research, as well as to support effective interventions aimed at supporting the introduction of new technology.


Author(s):  
Veronica Ferrara ◽  
Lars E. Bakken ◽  
Stefano Falomi ◽  
Giuseppe Sassanelli ◽  
Matteo Bertoneri ◽  
...  

In the last few years wet compression has received special attention from the oil and gas industry. Here, the development and implementation of new subsea solutions are important focus areas to increase production and recovery from existing fields. This new technology will contribute to exploitation of small and remote fields and access in very deep water. In this regard liquid tolerance represents a viable option to reduce the cost of a subsea compression station bringing considerable simplification to the subsea process itself. However, the industry may experience some drawbacks: the various levels of liquid presence may create operational risk for traditional compressors; the liquid may cause mechanical damage because of erosion and corrosion of the internal units and the compressor performance might be affected too. The experimental investigation conducted in the study considers dry and wet conditions in a laboratory setup to understand how the presence of liquid influences the stage performance. The test campaign has been carried out at the Norwegian University of Science and Technology, NTNU, in Trondheim, to assess the performance and operating range of a tridimensional impeller when processing a mixture of gas and liquid phases. Experimental results allowed validating the OEM internal prediction code for compressors’ performance in wet conditions. Finally, the effect of liquid on machine operability has been assessed through a left-limit investigation by means of dynamic pressure probes readings in order to evaluate the stall/surge behaviour for different values of liquid mass fraction.


2013 ◽  
Vol 53 (2) ◽  
pp. 491
Author(s):  
Paul Agar

With rising costs, a tight labour market, and prolonged global economic uncertainty, it is unsurprising that investment decisions are being re-evaluated across Australia's resources and energy industry. Amid this tough market environment, effective asset management has never been more important. Asset management was first adopted by Australia's oil and gas industry in the early 90s and is now well entrenched. There is widespread acknowledgement that it breaks down project complexity and plays a critical role in maximising project net present value. If done well, asset management takes a long-term view of asset life-cycles–from concept and creation, to services that deliver production assurance and lower costs. While these principles are well understood across the market, asset data capture and analysis–a critical element to successful asset management–requires ongoing review. Accurate and comprehensive asset data is the basis on which all good asset-management decisions are made. Developments in geographic information systems, SAP, and cloud-based technology are redefining the way asset data is collected, stored, analysed, and fed back into asset-management decisions. Asset managers of oil and gas assets should, therefore, be asking themselves three important questions: Are we using the latest technology to collect, store, and analyse asset data? Which project stakeholders need to interact with the data? Do our existing or planned asset-management models have the capacity to integrate and evolve with new technology as it develops?


Author(s):  
Josef Avagianos ◽  
Kostas Papamantellos

The world production capacity on large-diameter welded pipe amounts to more than 12 million tons per year 20–25% are produced as spiral sub-arc welded (SAW) pipes, with the balance of 75–80% being longitudinal SAW pipes (from plates). For most spiral-weld producers, a sizeable portion of line pipe is for water transportation, rather than hydrocarbon. In the past, the relative structural weakness of spiral-welded pipe, due to larger welded area, limited the growth of its use in the oil industry. With the development of more advanced production technology, the acceptance of spiral-welded pipes in the oil and gas industry has increased significantly. In this paper, the principals of the spiral manufacturing technology from coil by the two-step-method are introduced and the innovations of Corinth Pipework’s production facility are outlined in detail, including the sophisticated NDT techniques and the Quality Management System.


Author(s):  
Ricardo de Lepeleire ◽  
Nicolas Rogozinski ◽  
Hank Rogers ◽  
Daniel Ferrari

Within the oil and gas industry, significant costs are often incurred by the operating company during the well-construction phase of drilling operations. Specifically, the operators cost to drill a well can cost tens or hundreds of millions of USD. One specific area where significant changes in drilling operations have occurred is in the offshore environment, specifically operations from mobile offshore drilling units (MODUs). With the ever-increasing demand for oil and gas, operators globally have increased drilling budgets in an effort to meet forecasted demand. However, the increased budgets are often eroded or offset by increasing drilling costs. Therefore, operators are continually in search of new technology, processes, or procedures to help improve drilling operations and overall operational efficiencies. One Latin America operator identified a common operation as a possible area where operational cost could be easily reduced through the implementation of systems that allow the manipulation of valve manifolds remotely. Additionally, operating such valve manifolds remotely enhanced operational safety for personnel, which was an equally important consideration. This paper details the evaluation of existing equipment and procedures and a process used to develop a new remote-control system using a machine logic control (MLC) that has been designed, built, tested, and deployed successfully on MODUs operating in Latin America.


2021 ◽  
Author(s):  
Michael Ramon ◽  
Tony Wooley ◽  
Kyle Martens ◽  
Amy Farrar ◽  
Seth Fadaol

Abstract The culture of safety within the oil and gas industry has undergone an evolution since the advent of significant E&P operations in the late 1800s. The initial focus on safety was to protect property, not people. This mentality has shifted over time to include a greater focus on the safety of personnel, in parallel with technology developments that have pushed the limits of operators’ and service providers’ abilities to drill and complete more complicated wells. The safety efforts introduced to date have yielded results in every major HS&E category; however, falls and dropped objects continue to be areas in need of improvement. During cementing rig up and operations there are still many manual activities that require working at heights in the derrick. New technological advances have allowed the industry to reduce the number of hands-on activities on the rig and operators have moved to eliminate these activities by automating operations. Man lifting operations are recognized as a high-risk activity and, as such, many rigs require special permitting. During cementing operations, not only are personnel lifted into hazardous positions, but they are usually equipped with potential dropped objects. Some of these objects, if dropped, reach an impact force that could seriously injure or, in worst cases, result in a fatality. During these operations, personnel are also hoisted along with a heavy cement line in very close proximity. This introduces other dangers such as tangling, pinch points, and blunt force trauma. These risks are heavily increased when working in adverse conditions, such as high winds or rough seas. By utilizing a wireless cement line make up device, along with wireless features on a cement head to release the darts/plugs/balls and operate the isolation valves, an operator can eliminate the need for hands-on intervention. This paper will discuss current cement head technologies available to the operator that allow them to improve safety and efficiencies in operational rig time. Three field studies will be presented that detail running cement jobs with all functions related to the wireless attributes of the cement head. The field studies will present the operational efficiencies achieved by utilizing the wireless features compared to the standard manual method. Before the recent introduction of a wireless cementing line make-up device, a wireless cement head still required hands-on intervention to rig up the tools, putting people in high-risk situations.


Sign in / Sign up

Export Citation Format

Share Document