Local Velocity Measurements and Computational Fluid Dynamics (CFD) Simulations of Swirling Flow in a Cylindrical Cyclone Separator

2004 ◽  
Vol 126 (4) ◽  
pp. 326-333 ◽  
Author(s):  
Ferhat M. Erdal ◽  
Siamack A. Shirazi

Local measurements and 3D CFD simulations in gas-liquid cylindrical cyclone separators are scarce. The main objective of this study is to conduct local measurements and 3D CFD simulations to understand the swirling flow behavior in a cylindrical cyclone with one inclined tangential inlet. Axial and tangential velocities and turbulent kinetic energy across the cylinder diameter ID=0.089m were measured at 24 different axial locations (0.32–0.90 m below the inlet) by using a laser Doppler velocimeter (LDV). The liquid flow rate was 16.4m3/h, which corresponds to an average axial velocity of 0.732 m/s and Reynolds number of 66,900. Measurements are used to create color contour plots of axial and tangential velocity and turbulent kinetic energy. Color contour maps revealed details of the flow behavior. Additionally, 3D CFD simulations with different turbulence models are conducted. Simulations results are compared to LDV measurements.

Author(s):  
Ferhat M. Erdal ◽  
Siamack A. Shirazi

Abstract Local measurements and 3-D CFD simulations in Gas-Liquid cylindrical Cyclone (GLCC©) separators are scarce. The main objective of this study is to conduct local measurements and 3-D CFD simulations to understand the swirling flow behavior in a cylindrical cyclone with one inclined tangential inlet. Axial and tangential velocities and turbulent intensities across the GLCC© diameter were measured at 24 different axial locations (12.5″ to 35.4″ below the inlet) by using a Laser Doppler Velocimeter (LDV). The liquid flow rate was 72GPM, which corresponds to an average axial velocity of 0.732 m/s and Reynolds number of 66,900. Measurements are used to create color contour plots of axial and tangential velocity and turbulent kinetic energy. Color contour maps revealed details of the flow behavior. Additionally, 3-D CFD simulations with different turbulence models are conducted. Simulations results are compared to LDV measurements.


Author(s):  
Ferhat M. Erdal ◽  
Siamack A. Shirazi

The use of Gas-Liquid Cylindrical Cyclone (GLCC©) separators for gas-liquid separation is a new technology for oil and gas industry. Consequently, it is important to understand the flow behavior in the GLCC© and effect of different geometrical configurations to enhance separation. The main objective of this study is to address the effect of different inlet configurations on flow behavior in the GLCC© by measuring velocity components and turbulent kinetic energy inside the GLCC© using a Laser Doppler Velocimeter (LDV). Three different inlet configurations are constructed, namely: one inclined inlet, two inclined inlets and a gradually reduced inlet nozzle. Axial and tangential velocities and turbulent intensities across the GLCC© diameter were measured at 24 different axial locations (12.5” to 35.4” below the inlet) for each inlet configuration. Flow rates of 72 and 10 gpm are selected to investigate the effect of flowrate (Reynolds number) on the flow behavior. Measurements are used to create color contour plots of axial and tangential velocity and turbulent kinetic energy. Color contour maps revealed details of the flow behavior.


2006 ◽  
Vol 128 (1) ◽  
pp. 62-69 ◽  
Author(s):  
Ferhat M. Erdal ◽  
Siamack A. Shirazi

The use of Gas-Liquid Cylindrical Cyclone (GLLC©) separators for gas-liquid separation is a new technology for oil and gas industry. Consequently, it is important to understand the flow behavior in the GLLC© and the effect of different geometrical geometries to enhance separation. The main objective of this study is to address the effect of different inlet geometries on the flow behavior in the GLLC© by measuring velocity components and the sum of the axial and tangential velocity fluctuations inside the GLLC© using a Laser Doppler Velocimeter (LDV). Three different inlet geometries were considered, namely, one inclined inlet, two inclined inlets, and a gradually reduced inlet nozzle. Axial and tangential velocities and turbulent intensities across the GLLC© diameter were measured at 24 different axial locations (318-900mm below the inlet) for each inlet geometry. Flow rates of 0.00454 and 0.00063m3∕s were selected to investigate the effect of flowrate (Reynolds number) on the flow behavior. Color contour maps color contour plots of axial and tangential velocity and the sum of the axial and tangential velocity fluctuations revealed some remarkable details of the flow behavior.


Author(s):  
J. Song ◽  
N. Kharoua ◽  
L. Khezzar ◽  
M. Alshehhi

Phase separation using swirling flows is a technique used in inline separators. In the present study, an existing separator device generates a swirling flow which interacts with a conical hollow bluff body to where the air phase is collect. We use the commercial CFD code Fluent to simulate and investigate the characteristics of single-phase turbulent swirling flow interaction with a solid conical bluff body on a laboratory-scale model. The simulation work employed different RANS turbulence models; namely, RNG k-ε, SST k-ω and RSM. A constant velocity was imposed at the inlet of the computational domain while a constant pressure was prescribed at the outlet. The results are validated against experimental measurements. The effect of flow rate was investigated. The resulting flow is investigated around the bluff body and within the whole outlet pipe downstream of the swirl generator because the separation depends strongly on the flow behavior in this extended region. The core flow reversal persists up to the bluff body at high flow rates. This is significant in terms of phase behavior in the separation application in addition to the loads on the bluff body. The profiles of the tangential velocity corresponded to a Rankine vortex swirling flow type along the whole axial distance. The results show that the RSM gives the best accuracy among the three RANS models compared with the experimental data. The rate of swirl decay decreases as the flow rate increases. For the lowest flow rate, the swirl decay followed an exponential trend which becomes almost linear for the highest flow rate considered. At low swirl intensities, the pressure peaks are observed on the bluff body apex while, at high swirl intensities, the reversal flow generates the lowest pressure at the centerline affecting the cone as well.


1998 ◽  
Vol 5 (3) ◽  
pp. 201-215 ◽  
Author(s):  
C M Mak ◽  
D J Oldham

In this paper an engineering approach is followed to investigate the feasibility of developing a method in which information provided by standard CFD turbulence models can be employed as the basis of an airflow noise prediction technique. To this end, experimental results obtained by previous investigators have been processed and compared with CFD predictions. The turbulence-based predictive technique investigated was based on the relationship between the acoustic power radiated due to the interaction of airflow and a spoiler and the turbulent kinetic energy generated in the region of the spoiler. The sound power level of regenerated noise determined experimentally was related to the turbulent kinetic energy in the vicinity of spoiler provided by CFD simulations of the relevant configurations. A collapse of the data from the simulation models was obtained against the experimental data. The data collapse for a particular spoiler was generally excellent for the higher Strouhal numbers but was less good at lower Strouhal numbers where considerable scatter was observed.


2020 ◽  
pp. 2150083
Author(s):  
Chao Liu ◽  
Hongxun Chen ◽  
Zhengchuan Zhang ◽  
Zheng Ma

In order to reveal the operating characteristics of the pumpjet propulsor, standard [Formula: see text]–[Formula: see text], standard [Formula: see text]–[Formula: see text], RNG [Formula: see text]–[Formula: see text] and SST [Formula: see text]–[Formula: see text] turbulence models were used to conduct steady calculation for the whole flow channels. By comparing the calculation results with experimental data, it was found that the calculation errors were very large in some operating conditions. Therefore, the uncertainty analysis was carried out at all operating conditions of the pumpjet propulsor and the error source was finally determined that it is mainly derived from the model error. Then, the applicability of different turbulence models was analyzed to numerical simulation for the pumpjet propulsor by comparing the internal and external characteristics. It can be seen that the strong turbulent kinetic energy in the guide vane will inevitably cause energy loss, but not necessarily in the impeller. In this area, the increase of turbulent kinetic energy will enhance the mixing and transport of fluids, and the impeller makes the fluids get more energy. In addition, a modified hybrid Reynolds Average Numerical Simulation/Large Eddy Simulation (RANS/LES) model was proposed for unsteady calculation, and the performances, internal flow states and the interaction between the pump and the outer region were further revealed under various conditions of the pumpjet propulsor, which provides some references for predicting accurately and selecting conditions optimally in the future.


2013 ◽  
Vol 8 (2) ◽  
pp. 119-127 ◽  
Author(s):  
D. K. Chibwe ◽  
G. Akdogan ◽  
P. Taskinen

Abstract Typical current operation of lateral-blown Peirce-Smith converters (PSCs) has the common phenomenon of splashing and slopping due to air injection. The splashing and wave motion in these converters cause metal losses and potential production lost time due to intermittent cleaning of the converter mouth and thus reduced process throughput. Understanding of the effect of combined top and lateral blowing could possibly lead to alternative technology advancement for increased process efficiency. In this study, computational fluid dynamics (CFD) simulations of conventional common practice (lateral blowing) and combined (top and lateral blowing) in a PSC were carried out, and results of flow variables (bath velocity, turbulence kinetic energy, etc.) were compared. The two-dimensional (2-D) and three-dimensional (3-D) simulations of the three-phase system (air–matte–slag) were executed utilizing a commercial CFD numerical software code, ANSYS FLUENT 14.0. These simulations were performed employing the volume of fluid and realizable turbulence models to account for multiphase and turbulent nature of the flow, respectively. Upon completion of the simulations, the results of the models were analysed and compared by means of density contour plots, velocity vector plots, turbulent kinetic energy vector plots, average turbulent kinetic energy, turbulent intensity contour plots and average matte bulk velocity. It was found that both blowing configuration and slag layer thickness have significant effects on mixing propagation, wave formation and splashing in the PSC as the results showed wave formation and splashing significantly being reduced by employing combined top- and lateral-blowing configurations.


2010 ◽  
Vol 37 (4) ◽  
pp. 648-656 ◽  
Author(s):  
Ahmad Sana ◽  
Hitoshi Tanaka

A total of seven versions of two-equation turbulence models (four versions of low Reynolds number k–ε model, one k–ω model and two versions of k–ε / k–ω blended models) are tested against the direct numerical simulation (DNS) data of a one-dimensional oscillatory boundary layer with flat crested free-stream velocity that results from a steep pressure gradient. A detailed comparison has been made for cross-stream velocity, turbulent kinetic energy (TKE), Reynolds stress, and ratio of Reynolds stress and turbulent kinetic energy. It is observed that the newer versions of k–ε model perform very well in predicting the velocity, turbulent kinetic energy, and Reynolds stress. The k–ω model and blended models underestimate the peak value of turbulent kinetic energy that may be explained by the Reynolds stress to TKE ratio in the logarithmic zone. The maximum bottom shear stress is well predicted by the k–ε model proposed by Sana et al. and the original k–ω model.


Author(s):  
Margaret Mkhosi ◽  
Richard Denning ◽  
Audeen Fentiman

The computational fluid dynamics code FLUENT has been used to analyze turbulent fluid flow over pebbles in a pebble bed modular reactor. The objective of the analysis is to evaluate the capability of the various RANS turbulence models to predict mean velocities, turbulent kinetic energy, and turbulence intensity inside the bed. The code was run using three RANS turbulence models: standard k-ε, standard k-ω and the Reynolds stress turbulence models at turbulent Reynolds numbers, corresponding to normal operation of the reactor. For the k-ε turbulence model, the analyses were performed at a range of Reynolds numbers between 1300 and 22 000 based on the approach velocity and the sphere diameter of 6 cm. Predictions of the mean velocities, turbulent kinetic energy, and turbulence intensity for the three models are compared at the Reynolds number of 5500 for all the RANS models analyzed. A unit-cell approach is used and the fluid flow domain consists of three unit cells. The packing of the pebbles is an orthorhombic arrangement consisting of seven layers of pebbles with the mean flow parallel to the z-axis. For each Reynolds number analyzed, the velocity is observed to accelerate to twice the inlet velocity within the pebble bed. From the velocity contours, it can be seen that the flow appears to have reached an asymptotic behavior by the end of the first unit cell. The velocity vectors for the standard k-ε and the Reynolds stress model show similar patterns for the Reynolds number analyzed. For the standard k-ω, the vectors are different from the other two. Secondary flow structures are observed for the standard k-ω after the flow passes through the gap between spheres. This feature is not observable in the case of both the standard k-ε and the RSM. Analysis of the turbulent kinetic energy contours shows that there is higher turbulence kinetic energy near the inlet than inside the bed. As the Reynolds number increases, kinetic energy inside the bed increases. The turbulent kinetic energy values obtained for the standard k-ε and the RSM are similar, showing maximum turbulence kinetic energy of 7.5 m2·s−2, whereas the standard k-ω shows a maximum of about 20 m2·s−2. Another observation is that the turbulence intensity is spread throughout the flow domain for the k-ε and RSM whereas for the k-ω, the intensity is concentrated at the front of the second sphere. Preliminary analysis performed for the pressure drop using the standard k-ε model for various velocities show that the dependence of pressure on velocity varies as V1.76.


1993 ◽  
Vol 115 (1) ◽  
pp. 109-114 ◽  
Author(s):  
T.-M. Liou ◽  
Y.-Y. Wu ◽  
Y. Chang

Laser-Doppler velocimeter measurements of mean velocities, turbulence intensities, and Reynolds stresses are presented for periodic fully developed flows in a channel with square rib-disturbed walls on two opposite sides. Quantities such as the vorticity thickness and turbulent kinetic energy are used to characterize the flow. The investigated flow was periodic in space. The Reynolds number based on the channel hydraulic diameter was 3.3×104. The ratios of pitch to rib-height and rib-height to chamber-height were 10 and 0.133, respectively. Regions where maximum and minimum Reynolds stress and turbulent kinetic energy occurred were identified from the results. The growth rate of the shear layers of the present study was compared with that of a backward-facing step. The measured turbulence anisotropy and structure parameter distribution were used to examine the basic assumptions embedded in the k–ε and k–ε–A models. For a given axial station, the peak axial mean-velocity was found not to occur at the center point. The secondary flow was determined to be Prandtl’s secondary flow of the second kind according to the measured streamwise mean vorticity and its production term.


Sign in / Sign up

Export Citation Format

Share Document