Flow Analysis and Modeling of Field-Controllable, Electro- and Magneto-Rheological Fluid Dampers

2005 ◽  
Vol 74 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Xiaojie Wang ◽  
Faramarz Gordaninejad

This study combines a fluid mechanics-based approach and the Herschel-Bulkley constitutive equation to develop a theoretical model for predicting the behavior of field-controllable, magneto-rheological (MR), and electro-rheological (ER) fluid dampers. The goal is to provide an accurate theoretical model for analysis, design, and development of control algorithms of MR/ER dampers. Simplified explicit expressions for closed-form solution of the pressure drop across a MR fluid valve are developed. The Herschel-Bulkley quasi-steady flow analysis is extended to include the effect of fluid compressibility to account for the nonlinear dynamic behavior of MR/ER fluid dampers. The advantage of this model is that it only depends on geometric and material properties of the MR/ER material and the device. The theoretical results are validated by an experimental study. It is demonstrated that the proposed model can effectively predict the nonlinear behavior of field-controllable fluid dampers.

2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Basil A. Housari ◽  
Ali A. Alkelani ◽  
Sayed A. Nassar

An improved mathematical model is proposed for predicting clamp load loss due gasket creep relaxation in bolted joints, taking into consideration gasket behavior, bolt stiffness, and joint stiffness. The gasket creep relaxation behavior is represented by a number of parameters which has been obtained experimentally in a previous work. An experimental procedure is developed to verify the proposed model using a single-bolt joint. The bolt is tightened to a target preload and the clamp load loss due to gasket creep relaxation is observed over time under various preload levels. The experimental and analytical results are presented and discussed. The proposed model provides a prediction of the residual clamp load as a function of time, gasket material and thickness, bolt stiffness, and joint stiffness. The improved model can be used to simulate the behavior of creep relaxation in soft joints as the joint stiffness effect is considered. Additionally, a closed form solution is formulated to determine the initial clamp load level necessary to provide the desired level of a steady state residual clamp load in the joint, by taking the gasket creep relaxation into account.


1976 ◽  
Vol 43 (2) ◽  
pp. 325-329 ◽  
Author(s):  
S. S. Chen ◽  
M. W. Wambsganss ◽  
J. A. Jendrzejczyk

This paper presents an analytical and experimental study of a cylindrical rod vibrating in a viscous fluid enclosed by a rigid, concentric cylindrical shell. A closed-form solution for the added mass and damping coefficient is obtained and a series of experiments with cantilevered rods vibrating in various viscous fluids is performed. Experimental data and theoretical results are in good agreement.


Author(s):  
Basil A. Housari ◽  
Ali A. Alkelani ◽  
Sayed A. Nassar

An improved mathematical model is proposed for predicting the residual clamp load in gasketed bolted joints, taking into consideration gasket creep relaxation behavior, bolt stiffness, and joint stiffness. The gasket creep relaxation behavior is represented by a number of parameters which has been obtained experimentally in a previous work. An experimental procedure is developed to verify the proposed model using a single-bolt joint. The bolt is tightened to a target preload and the clamp load loss due to gasket creep relaxation is observed over time under various preload levels. The experimental and analytical results are presented and discussed. The proposed model provides a prediction of the residual clamp load as a function of time, gasket material and thickness, bolt stiffness, and joint stiffness. The improved model can be used to simulate the behavior of creep relaxation in soft joints as the joint stiffness effect is considered. Additionally, a closed form solution is formulated to determine the initial clamp load level necessary to provide the desired level of a steady state residual clamp load in the joint, by taking the gasket creep relaxation into account.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Huang Bai ◽  
Sheng Li ◽  
Qianru Jiang

Dictionary learning problem has become an active topic for decades. Most existing learning methods train the dictionary to adapt to a particular class of signals. But as the number of the dictionary atoms is increased to represent the signals much more sparsely, the coherence between the atoms becomes higher. According to the greedy and compressed sensing theories, this goes against the implementation of sparse coding. In this paper, a novel approach is proposed to learn the dictionary that minimizes the sparse representation error according to the training signals with the coherence taken into consideration. The coherence is constrained by making the Gram matrix of the desired dictionary approximate to an identity matrix of proper dimension. The method for handling the proposed model is mainly based on the alternating minimization procedure and, in each step, the closed-form solution is derived. A series of experiments on synthetic data and audio signals is executed to demonstrate the promising performance of the learnt incoherent dictionary and the superiority of the learning method to the existing ones.


1970 ◽  
Vol 37 (3) ◽  
pp. 587-595 ◽  
Author(s):  
C. R. Steele ◽  
J. Skogh

A closed-form solution is obtained for the problem of a shell of revolution with a meridional slope discontinuity, which might occur at a weld seam in a pressure vessel. The effect of significant variation in the slope occurring within the usual “edge zone” and the nonlinear pressurization effect are taken into consideration. Graphs are presented from which maximum stresses can be easily computed for a wide variation of the parameters. The theoretical results agree with numerical values obtained from a computer program, even for shells that are relatively thick, for slope discontinuities that are relatively severe, and for high pressurization.


2008 ◽  
Vol 130 (1) ◽  
Author(s):  
Ali A. Alkelani ◽  
Basil A. Housari ◽  
Sayed A. Nassar

A mathematical model is proposed for predicting the residual clamp load during creep and∕or relaxation in gasketed joints. An experimental procedure is developed to verify the proposed model for predicting the gasket relaxation under a constant compression, gasket creep under a constant stress, and gasket creep relaxation. To study gasket creep relaxation, a single-bolt joint is used. The bolt is tightened to a target preload and the clamp load decay due to gasket creep relaxation is observed over time under various preload levels. Experimental and analytical results are presented and discussed. The proposed model provides an accurate prediction of the residual clamp load as a function of time, gasket material, and geometric properties of the gasket. A closed form solution is formulated to determine the initial clamp load level necessary to provide the desired level of a steady state residual clamp load in the joint, by taking the gasket creep relaxation into account.


2017 ◽  
Vol 32 (1) ◽  
pp. 67-95 ◽  
Author(s):  
Xingchun Wang

In this paper, we present a new pricing model for vulnerable options, with time-varying variances for each asset described by Generalized Autoregressive Conditional Heteroscedasticity processes and correlated with the return of the asset. By connecting the underlying asset and the counterparty's assets through the market factor channel, the proposed model also captures stochastic correlation between the underlying asset return and the return of the counterparty's assets. The correlation depends on the levels of the variances of both assets and the market index as well. In the proposed framework, the closed-form solution for vulnerable options is derived and numerical results are presented to investigate the impact of counterparty default risk.


2009 ◽  
Vol 4 (5) ◽  
Author(s):  
Norman W Loney ◽  
Ramana Susarla

A closed form solution has been obtained for the release kinetics of a solute from a spherical drug matrix into a finite volume of liquid, taking into account the effect of rate of absorption. The proposed model results clearly show the effect of the absorption rate constant on the rate of drug release. The obtained results are compared with the experimental data and diffusion-only model results. There is a significant difference in the release profile when the rate of absorption of drug is slow. The most important feature of the mathematical relationship between the liquid concentration verses time is its ability to predict change in the performance of the drug by manipulating the parameters of the equation. These parameters include the initial concentration of the drug, the radius of the drug and diffusivity of the drug in the solid to name a few. Therefore, a substantial number of experiments can be eliminated when the optimal performance of a drug is sought after.


2009 ◽  
Vol 4 (5) ◽  
Author(s):  
Norman W Loney

The closed form solution to the conjugated boundary value problem posed by a counter current hemodialyzer facilitates the estimation of the overall mass transfer coefficient. Comparison of the proposed model results with published experimental data shows good agreement for Urea and Creatinine clearances over a published range of blood and dialyzate flow rates. This model predicts clearances with a maximum error of less than 4% for both Urea and Creatinine when blood flow is 75% of the dialyzate flow. However, when both blood and dialyzate flows are identical the model over predicts the experimental data by 1.47% in the case of Urea and 4.75 for Creatinine flows of 300 ml/min. Although the concentration profile is an infinite series involving confluent hypergeometric functions, 2 terms of the series were sufficient (Mathematica notebook program) to produce these results. Overall mass transfer coefficients can now be deduced from the Sherwood numbers and provide possible improvement over currently used area coefficients.


2016 ◽  
Vol 31 (1) ◽  
pp. 100-120 ◽  
Author(s):  
Xingchun Wang

In this paper, we present a pricing model for vulnerable options in discrete time. A Generalized Autoregressive Conditional Heteroscedasticity process is used to describe the variance of the underlying asset, which is correlated with the returns of the asset. As for counterparty default risk, we study it in a reduced form model and the proposed model allows for the correlation between the intensity of default and the variance of the underlying asset. In this framework, we derive a closed-form solution for vulnerable options and investigate quantitative impacts of counterparty default risk on option prices.


Sign in / Sign up

Export Citation Format

Share Document