Critical Strain of Carbon Nanotubes: An Atomic-Scale Finite Element Study

2006 ◽  
Vol 74 (2) ◽  
pp. 347-351 ◽  
Author(s):  
X. Guo ◽  
A. Y. T. Leung ◽  
H. Jiang ◽  
X. Q. He ◽  
Y. Huang

This paper employs the atomic-scale finite element method (AFEM) to study critical strain of axial buckling for carbon nanotubes (CNTs). Brenner et al. “second-generation” empirical potential is used to model covalent bonds among atoms. The computed energy curve and critical strain for (8, 0) single-walled CNT (SWNT) agree well with molecular dynamics simulations. Both local and global buckling are achieved, two corresponding buckling zones are obtained, and the global buckling behavior of SWNT with a larger aspect ratio approaches gradually to that of a column described by Euler’s formula. For double-walled CNTs with smaller ratio of length to outer diameter, the local buckling behavior can be explained by conventional shell theory very well. AFEM is an efficient way to study buckling of CNTs.

Author(s):  
Changliang Lai ◽  
Qianqian Sui ◽  
Hualin Fan

To develop large-span but ultralight lattice truss columns, a hierarchical IsoTruss column (HITC) was proposed. The multi-buckling behavior of the axially compressed HITC was analyzed by the finite element method (FEM) using a parametric approach in the framework of ANSYS parametric design language (APDL). It was demonstrated that the program enables efficient generation of the finite element (FE) model, while facilitating the parametric design of the HITC. Using this program, the effects of helical angles and brace angles on the buckling behavior of the HITC were investigated. Depending on the helical angles and brace angles, the HITCs mainly have three buckling modes: the global buckling, the first-order local buckling and the second-order local buckling. Theoretical multi-buckling models were established to predict the critical buckling loads. Buckling failure maps based on the theoretical analyses were also developed, which can be useful in preliminary design of such structures.


2000 ◽  
Author(s):  
Hassan Mahfuz ◽  
Syful Islam ◽  
Leif Carlsson ◽  
Makeba Atkins ◽  
Shaik Jeelani

Abstract Foam core sandwich composites have been fabricated using innovative co-injection resin infusion technique and tested under in-plane compression. The sandwich construction consisted of Klegcell foam as core materials and S2-Glass/Vinyl ester composites as face sheets. Tests were conducted with various foam densities and also with implanted delamination between the core and the face sheet. The intent was to investigate the effect of core density, and the effect of core-skin debonds on the overall buckling behavior of the sandwich. Analytical and finite element calculations were also performed to augment the experimental observations. It has been observed that core density has direct influence on the global buckling of the sandwich panel, while embedded delamination seem to have minimal effect on both global as well as local buckling. Detailed description of the experimental work, finite element modeling and analytical calculations are presented in this paper.


2013 ◽  
Vol 658 ◽  
pp. 227-231
Author(s):  
Tao Zhu ◽  
Jin Long Chen ◽  
Wen Ran Gong

In this paper, the finite element method (FEM) was applied to predict the local buckling behavior and the debond propagation in honeycomb sandwich panels with face-core debond under in-plane compressive load. The finite element model of the sandwich panel was built, the cohesive element was used to model the adhesive between faces and core, the influence of the debond shape and size on the failure mode, critical buckling load and residual compressive strength of the sandwich panels was investigated, the rule of the damage propagation was summarized. The compression strength of the sandwich panels with through-width face-core debond decreases with increasing debond length. For the panels with central circular debond, when the diameter is less than 15mm, the panels will failure by global buckling and the debond will not grow. When the diameter is greater than 15mm, the panels will failure by local buckling and the critical load strongly decreases with increasing debond diameter. In addition, the direction of debond growth is predominantly perpendicular to the applied load.


Author(s):  
Nobuhisa Suzuki ◽  
Ryuji Muraoka ◽  
Alan Glover ◽  
Joe Zhou ◽  
Masao Toyoda

Local buckling behavior of API 5L X100 grade linepipes subjected to axial compression and/or bending moment is discussed in this paper based on results obtained by finite element analyses. Yield-to-tensile strength (Y/T) ratio and design factor were taken into account in the finite element analyses in order to discuss their effects on the local buckling behavior. The local bucking behavior of such lower strength linepipes as X60 and X80 grade linepipes is also discussed for comparison. Two-dimensional solid elements and four-node shell elements were used for the finite element modeling of the linepipes subjected to axial compression and bending moment, respectively. The study has improved the understanding of local buckling behavior of the X100 grade linepipes and observed the following trends. When a linepipe is subjected to axial compression, the critical axial stress decreases with increasing design factor and Y/T ratio. However, the nominal critical strain increases with increasing design factor and decreasing Y/T ratio. When a linepipe is subjected to bending moment, the critical bending moment decreases with increasing design factor and Y/T ratio. Similarly, the nominal critical strain increases with increasing design factor. However, the nominal critical strain increases with decreasing Y/T ratio when the design factor is less than and equal to 0.6 and decreases with decreasing Y/T ratio when the design factor is equal to 0.8.


2011 ◽  
Vol 374-377 ◽  
pp. 2430-2436
Author(s):  
Gang Shi ◽  
Zhao Liu ◽  
Yong Zhang ◽  
Yong Jiu Shi ◽  
Yuan Qing Wang

High strength steel sections have been increasingly used in buildings and bridges, and steel angles have also been widely used in many steel structures, especially in transmission towers and long span trusses. However, high strength steel exhibits mechanical properties that are quite different from ordinary strength steel, and hence, the local buckling behavior of steel equal angle members under axial compression varies with the steel strength. However, there is a lack of research on the relationship of the local buckling behavior of steel equal angle members under axial compression with the steel strength. A finite element model is developed in this paper to analyze the local buckling behavior of steel equal angle members under axial compression, and study its relationship with the steel strength and the width-to-thickness ratio of the angle leg. The finite element analysis (FEA) results are compared with the corresponding design method in the American code AISC 360-05, which provides a reference for the related design.


2007 ◽  
Vol 07 (01) ◽  
pp. 23-54 ◽  
Author(s):  
RUI BEBIANO ◽  
NUNO SILVESTRE ◽  
DINAR CAMOTIM

In this paper, one investigates the local-plate, distortional and global buckling behavior of thin-walled steel beams subjected to non-uniform bending moment diagrams, i.e. under the presence of longitudinal stress gradients. One begins by deriving a novel formulation based on Generalized Beam Theory (GBT), which (i) can handle beams with arbitrary open cross-sections and (ii) incorporates all the effects stemming from the presence of longitudinally varying stress distributions. This formulation is numerically implemented by means of the finite element method: one (i) develops a GBT-based beam finite element, which accounts for the stiffness reduction associated to applied longitudinal stresses with linear, quadratic and cubic variation, as well as to the ensuing shear stresses, and (ii) addresses the derivation of the equilibrium equation system that needs to be solved in the context of a GBT buckling analysis. Then, in order to illustrate the application and capabilities of the proposed GBT-based formulation and finite element implementation, one presents and discusses numerical results concerning (i) rectangular plates under longitudinally varying stresses and pure shear, (ii) I-section cantilevers subjected to uniform major axis bending, tip point loads and uniformly distributed loads, and (iii) simply supported lipped channel beams subjected to uniform major axis bending, mid-span point loads and uniformly distributed loads — by taking full advantage of the GBT modal nature, one is able to acquire an in-depth understanding on the influence of the longitudinal stress gradients and shear stresses on the beam local and global buckling behavior. For validation purposes, the GBT results are compared with values either (i) yielded by shell finite element analyses, performed in the code ANSYS, or (ii) reported in the literature. Finally, the computational efficiency of the proposed GBT-based beam finite element is briefly assessed.


Author(s):  
Ragnar T. Igland ◽  
Marit Irene Kvittem ◽  
Dmitry Vysochinskiy

Subsea flowline development for a field on the Norwegian Continental Shelf comprises design of HP/HT flowlines for oil and gas transport from subsea manifolds. Flowline engineering faces several challenges related to flowlines crossing very uneven seabed. Among them is choosing an expansion design philosophy that minimizes the need for continuous survey and intervention work updates. Control of buckling behavior is ensured by use of rock berms. The standard design of the rock dumps according to [1] is based on buckle sharing criterion for axial friction capacity, which aims to control initiation of buckles. However, fulfilling the buckle sharing criterion alone does not provide sufficient control of pipeline behavior through the different operational conditions. In addition to buckle sharing criterion fulfillment [1], anchoring rock berms shall also ensure that the point of zero axial displacement is inside the berm for all operational conditions. This will give control over feed-in lengths and counter pipeline walking between sections. Criteria for ARBs are established, covering post buckle and shutdown conditions in addition to buckle sharing. Unstable buckle configuration during shutdown/start-up cycles is defined as buckle walking. Redistribution of feed-in between buckles is frequently observed as the cause of buckle walking. Use of uplift cover is avoided or minimized in order to eliminate extra axial friction and the uncertainty around such friction, and thus to guarantee that the sectioning by anchoring rock berms (ARBs) is working. Within each section between ARBs the axial force in the system is held at a minimum level by controlled buckling. The combination of isolated pipeline sections with minimum axial restraint within the section provides control over unstable buckling behavior. Thus the risk of unexpected buckles is minimized. This is particularly important for uneven seabed. 3D global buckling analyses are performed by ANSYS with upper bound, best estimate and lower bound design parameters for friction in accordance with [1] and capacity control for local buckling of pipeline in accordance with [2].


2006 ◽  
Vol 99 (12) ◽  
pp. 124308 ◽  
Author(s):  
A. Y. T. Leung ◽  
X. Guo ◽  
X. Q. He ◽  
H. Jiang ◽  
Y. Huang

Sign in / Sign up

Export Citation Format

Share Document