Stress Classification Using the r-Node Method

2006 ◽  
Vol 129 (4) ◽  
pp. 676-682 ◽  
Author(s):  
Ihab F. Z. Fanous ◽  
R. Seshadri

The ASME Code Secs. III and VIII (Division 2) provide stress-classification guidelines to interpret the results of a linear elastic finite element analysis. These guidelines enable the splitting of the generated stresses into primary, secondary, and peak. The code gives some examples to explain the suggested procedures. Although these examples may reflect a wide range of applications in the field of pressure vessel and piping, the guidelines are difficult to use with complex geometries. In this paper, the r-node method is used to investigate the primary stresses and their locations in both simple and complex geometries. The method is verified using the plane beam and axisymmetric torispherical head. Also, the method is applied to analyze 3D straight and oblique nozzles modeled using both solid and shell elements. The results of the analysis of the oblique nozzle are compared with recently published experimental data.

Author(s):  
Ihab F. Z. Fanous ◽  
R. Seshadri

The ASME Code Section III and Section VIII (Division 2) provide stress classification guidelines to interpret the results of a linear elastic finite element analysis. These guidelines enable the splitting of the generated stresses into primary, secondary and peak. The code gives some examples to explain the suggested procedures. Although these examples may reflect a wide range of applications in the field of pressure vessel and piping, the guidelines are difficult to use with complex geometries. In this paper, the r-node method is used to investigate the primary stresses and their locations in both simple and complex geometries. The method is verified using the plane beam and axisymmetric torispherical head. Also, the method is applied to analyze 3D straight and oblique nozzle modeled using both solid and shell elements. The results of the analysis of the oblique nozzle are compared with recently published experimental data.


2011 ◽  
Vol 255-260 ◽  
pp. 1964-1967
Author(s):  
Tao Chen ◽  
Hua Dong He

This paper presents finite element analyses of a steel spiral staircase with multiple supports. The complex geometries were modeled using commercial finite element method (FEM) software. Linear elastic analyses were carried out to investigate its deformation and moment distribution. Besides these, mode analysis was also performed to explore its pedestrian comfort. Finally the reliability of the structure is proved.


2007 ◽  
Vol 353-358 ◽  
pp. 373-376 ◽  
Author(s):  
Bing Jun Gao ◽  
Xiao Ping Shi ◽  
Hong Yan Liu ◽  
Jin Hong Li

A key problem in engineering application of “design by analysis” approach is how to decompose a total stress field obtained by the finite element analysis into different stress categories defined in the ASME Code III and VIII-2. In this paper, we suggested an approach to separate primary stress with the principle of superposition, in which the structure does not need to be cut into primary structure but analyzed as a whole only with decomposed load. Taking pressurized cylindrical vessel with plate head as example, the approach is demonstrated and discussed in detail. The allowable load determined by the supposed method is a little conservative than that determined by limited load analysis.


Author(s):  
Alden Yellowhorse ◽  
Larry L. Howell

Ensuring that deployable mechanisms are sufficiently rigid is a major challenge due to their large size relative to their mass. This paper examines three basic types of stiffener that can be applied to light, origami-inspired structures to manage their stiffness. These stiffeners are modeled analytically to enable prediction and optimization of their behavior. The results obtained from this analysis are compared to results from a finite-element analysis and experimental data. After verifying these models, the advantages and disadvantages of each stiffener type are considered. This comparison will facilitate stiffener selection for future engineering applications.


2013 ◽  
Vol 856 ◽  
pp. 147-152
Author(s):  
S.H. Adarsh ◽  
U.S. Mallikarjun

Shape Memory Alloys (SMA) are promising materials for actuation in space applications, because of the relatively large deformations and forces that they offer. However, their complex behaviour and interaction of several physical domains (electrical, thermal and mechanical), the study of SMA behaviour is a challenging field. Present work aims at correlating the Finite Element (FE) analysis of SMA with closed form solutions and experimental data. Though sufficient literature is available on closed form solution of SMA, not much detail is available on the Finite element Analysis. In the present work an attempt is made for characterization of SMA through solving the governing equations by established closed form solution, and finally correlating FE results with these data. Extensive experiments were conducted on 0.3mm diameter NiTinol SMA wire at various temperatures and stress conditions and these results were compared with FE analysis conducted using MSC.Marc. A comparison of results from finite element analysis with the experimental data exhibits fairly good agreement.


2015 ◽  
Vol 741 ◽  
pp. 223-226
Author(s):  
Hai Bin Li

The performance of automobile drive axle housing structure affects whether the automobile design is successful or not. In this paper, the author built the FEA model of a automobile drive axle housing with shell elements by ANSYS. In order to building the optimization model of the automobile drive axle housing, the author studied the static and dynamic performance of it’s structure based on the model.


2000 ◽  
Vol 73 (2) ◽  
pp. 366-384 ◽  
Author(s):  
D. J. Seibert ◽  
N. Schöche

Abstract The paper compares the Arruda—Boyce model, the van der Waals model and the Reduced Polynomial model—a generic class of polynomial models of which Yeoh's cubic model is a special case—in their ability to predict multiaxial deformation states on the basis of uniaxial measurements. These models are reviewed in the light of novel experimental data, giving ample space to the derivation of the equations needed for optimization of the material parameters. The technological relevance of these findings is exemplified in the finite element analysis (FEA) of a complex membrane.


Author(s):  
Md Mohiuddin ◽  
Asma Akther ◽  
Eun Byul Jo ◽  
Hyun Chan Kim ◽  
Jaehwan Kim

The present study investigates a film actuator made with dielectric cellulose acetate films separated by narrow spacers as a means of electrostatic actuation for potential haptic application. Fabrication process for the actuator is explained along with experiments conducted over a wide frequency range of actuation frequency. A valid finite element simulation of the actuator is made on the quarter section of the actuator by using full 3D finite elements. Vibration characteristics such as fundamental natural frequency, mode shape and output velocity in the frequency range for haptic feeling generation are obtained from the finite element analysis and compared with the experimental results. Experimental results demonstrate that the finite element model is practical and effective enough in predicting the vibration characteristics of the actuator for haptic application. The film actuator shows many promising properties like high transparency, wide range of actuation frequency and high vibration velocity for instance.


1990 ◽  
Vol 112 (4) ◽  
pp. 481-483 ◽  
Author(s):  
Mack G. Gardner-Morse ◽  
Jeffrey P. Laible ◽  
Ian A. F. Stokes

This technical note demonstrates two methods of incorporating the experimental stiffness of spinal motion segments into a finite element analysis of the spine. The first method is to incorporate the experimental data directly as a stiffness matrix. The second method approximates the experimental data as a beam element.


Sign in / Sign up

Export Citation Format

Share Document