A Nonlinear Multi-Domain Thermomechanical Stress Analysis Method for Surface-Mount Solder Joints—Part II: Viscoplastic Analysis

1997 ◽  
Vol 119 (3) ◽  
pp. 177-182 ◽  
Author(s):  
S. Ling ◽  
A. Dasgupta

This is part II of a two-part paper presented by the authors for thermomechanical stress analysis of surface mount interconnects. A generalized multi-domain Rayleigh Ritz (MDRR) stress analysis technique has been developed to obtain the stress and strain fields in surface-mount solder joints under cyclic thermal loading conditions. The methodology was first proposed in Part I by the authors and results were presented for elastic-plastic loading (Ling et al., 1996). This paper extends the analysis for viscoplastic material properties. The solder joint domain is discretized selectively into colonies of nested sub-domains at locations where high stress concentrations are expected. Potential energy stored in the solder domain and in the attached lead and Printed Wiring Board (PWB) is calculated based on an assumed displacement field. Minimization of this potential energy provides a unique solution for the displacement field, consequently, stress and strain distribution. The MDRR technique was demonstrated to provide reasonable accuracy for elastic deformation (Ling and Dasgupta, 1995) and for time-independent elastic-plastic deformation (Ling and Dasgupta, 1996) for solder joints under cyclic thermal loading conditions. A piecewise linear incremental loading technique is used to solve the nonlinear elastic-plastic problem. The focus in the current paper is primarily on time-dependent viscoplastic deformation of the solder joints. Full field elastic, plastic, and viscoplastic analyses are performed, and the stress, strain hysteresis loops are obtained. Results are presented for a J-lead solder joint as an illustrative example.

1996 ◽  
Vol 118 (2) ◽  
pp. 72-79 ◽  
Author(s):  
S. Ling ◽  
A. Dasgupta

Solder joint fatigue failures are a potential reliability hazard in surface-mount electronic packages under cyclic thermal loading environment. Proper design and reliability assessment are thus crucial to ensure the fatigue endurance of the electronic packages. Accurate modeling of the stress and strain fields within the solder joint under cyclic thermal loading condition is of extreme importance since ultimately, a reasonable fatigue life estimation depends not only on a appropriate fatigue model, but more fundamentally, on accurately predicted stress and strain fields. Modeling stress and strain fields in solder joint in surface-mount electronic packages have never been an easy task since solder undergoes elastic, plastic and time dependent creep during each loading and unloading cycle. Some of the existing closed-form stress analysis models tend to oversimplify this complicated viscoplastic stress state, thus failing to give a reasonable prediction of the solder joint fatigue endurance. Extensive finite element analyses require prohibitive investment in terms of the analysis time and analyst expertise, especially when full scale elastic, plastic and creep analyses are performed. A generalized multi-domain approach proposed earlier by the authors is further developed in this paper to obtain the stress and strain fields in J-leaded surface-mount solder joint undergoing elastic-plastic deformation, under cyclic thermal environment (Ling et al., 1995). The Rayleigh-Ritz energy method based on a multi-field displacement assumption is used. In a previous paper (Ling et al., 1995), the results for analysis within elastic region had been demonstrated and were proved to be in agreement with finite element analysis. In this paper we further develop the methodology into plastic deformation region. Hysteresis loops for both the global and the local CTE mismatch problem can finally be generated. Results for two-dimensional elastic-plastic analysis are presented in the current paper. Creep deformation can be further modeled with this scheme by using time-stepping incremental techniques, and will be presented in a future paper. The final goal of this research is to predict the stress, strain and energy density distributions in the solder joint with reasonable accuracy. The fatigue assessment of the solder joint can then be performed by combining results from this stress analysis model with an appropriate damage model, for example, the energy-partitioning fatigue model (Dasgupta et al., 1992).


1997 ◽  
Vol 119 (3) ◽  
pp. 183-188 ◽  
Author(s):  
K. Darbha ◽  
S. Ling ◽  
A. Dasgupta

Recently, accelerated testing of surface mount interconnects under combined temperature and vibration environments has been recognized to be a necessary activity to ensure enhanced test-time compression. Successful use of vibration stresses requires a clear understanding of the correlation between vibrational damage and thermomechanical damage in surface mount solder joints. Hence, fatigue due to vibrational loading is important and accurate quantitative models are required to model effects due to vibrational fatigue. The proposed analysis in this paper contributes towards development of such quantitative models. This paper presents an approximate method to analyze stresses in surface mount solder joints subjected to vibration loading, using a generalized multidomain Rayleigh-Ritz approach (Ling and Dasgupta, 1995). The advantage of this approach is in its computational efficiency, compared to general-purpose finite element methods. Ling developed this approach in the context of thermomechanical stress analysis of solder joints. In this paper, the technique is modified and adapted for analyzing stresses caused by out-of-plane flexural dynamic modes of the printed wiring boards (PWBs). The analysis uses a two-step procedure where the local PWB curvatures are first estimated and the resulting deformations in the solder interconnect are then determined. The input boundary conditions for the first step are the bending moments in the PWB due to random vibrations. The stiffness of the interconnect assembly is then predicted using an energy method and curved-beam analysis. The bending moment and the computed stiffness of the interconnect assembly are then used to predict the local curvature of the PWB under any given surface-mount component by using an eigenfunction technique developed by Suhir (Suhir, 1988). In the second step of the analysis, the local curvature of the PWB is used as a boundary condition to predict the state of deformations, stresses, and strains in the solder joint using a modified version of the multidomain Rayleigh-Ritz approach. The overall method is applied to a specific example (J-lead solder joint) for illustrative purposes, and compared to finite element predictions for validation.


2015 ◽  
Vol 27 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Peter K. Bernasko ◽  
Sabuj Mallik ◽  
G. Takyi

Purpose – The purpose of this paper is to study the effect of intermetallic compound (IMC) layer thickness on the shear strength of surface-mount component 1206 chip resistor solder joints. Design/methodology/approach – To evaluate the shear strength and IMC thickness of the 1206 chip resistor solder joints, the test vehicles were conventionally reflowed for 480 seconds at a peak temperature of 240°C at different isothermal ageing times of 100, 200 and 300 hours. A cross-sectional study was conducted on the reflowed and aged 1206 chip resistor solder joints. The shear strength of the solder joints aged at 100, 200 and 300 hours was measured using a shear tester (Dage-4000PXY bond tester). Findings – It was found that the growth of IMC layer thickness increases as the ageing time increases at a constant temperature of 175°C, which resulted in a reduction of solder joint strength due to its brittle nature. It was also found that the shear strength of the reflowed 1206 chip resistor solder joint was higher than the aged joints. Moreover, it was revealed that the shear strength of the 1206 resistor solder joints aged at 100, 200 and 300 hours was influenced by the ageing reaction times. The results also indicate that an increase in ageing time and temperature does not have much influence on the formation and growth of Kirkendall voids. Research limitations/implications – A proper correlation between shear strength and fracture mode is required. Practical implications – The IMC thickness can be used to predict the shear strength of the component/printed circuit board pad solder joint. Originality/value – The shear strength of the 1206 chip resistor solder joint is a function of ageing time and temperature (°C). Therefore, it is vital to consider the shear strength of the surface-mount chip component in high-temperature electronics.


2020 ◽  
Author(s):  
Hui YANG ◽  
Jihui Wu

Abstract The simulation of nano-silver solder joints in flip-chips is performed by the finite element software ANSYS, and the stress-strain distribution results of the solder joints are displayed. In this simulation, the solder joints use Anand viscoplastic constitutive model, which can reasonably simulate the stress and strain of solder joints under thermal cycling load. At the same time this model has been embedded in ANSYS software, so it is more convenient to use. The final simulation results show that the areas where the maximum stresses and strains occur at the solder joints are mostly distributed in the contact areas between the solder joints and the copper pillars and at the solder joints. During the entire thermal cycling load process, the area where the maximum change in stress and strain occurs is always at the solder joint, and when the temperature changes, the temperature at the solder joint changes significantly. Based on comprehensive analysis, the relevant empirical correction calculation equation is used to calculate and predict the thermal fatigue life of nano-silver solder joints. The analysis results provide a reference for the application of nano-silver solder in the electronic packaging industry.


Author(s):  
Debabrata Mondal ◽  
Abdullah Fahim ◽  
KM Rafidh Hassan ◽  
Jeffrey C. Suhling ◽  
Pradeep Lall

Abstract Lead-free solder joints are the most widely used interconnects in electronic packaging industries. Usually solder joints in most of the electronic devices are exposed to an environment where variation of temperature exists, which indicates cyclic thermal loading to be a very common type of external loading. Moreover, due to difference in the coefficient of thermal expansion (CTE) among dissimilar contact materials, shear stress develops in junctions under thermal loading, which significantly deteriorates the overall reliability. Hence, characterization of lead-free solder materials under thermal loading is essential to predict the performance and deformation behavior of joints in practical applications. A significant portion of the studies in this field are concerned with thermal loading of lead-free solder interconnects, each of which has a very small diameter, in sub-millimeter range. Although the solder balls have very small dimensions, most of the analyses considered them as a bulk material with homogeneous and isotropic properties. However, with the decrease of specimen dimensions, size effects and material directionality play a significant role in deformation mechanisms. Since a very few grains exist in a small specimen, individual grain properties play a vital role on overall material response. Therefore, modeling from the grain structure and orientation point of view could be an effective and more accurate way to predict solder joint deformation behavior under thermal loading. In this study, the effect of grain size and orientation of SAC305 is investigated for predicting anisotropic behavior of solder joints under thermal load. A simplified three-dimensional model of beach-ball configuration solder joint was generated and simulated using ABAQUS finite element (FE) software. Experimentally obtained directional properties such as elastic modulus and CTE were assigned to the computational geometry to create material anisotropy. The effects of material anisotropy were studied for varying grain size specimens, as well as for specimens with varying grain orientation.


Author(s):  
A. R. S. Ponter ◽  
H. Chen ◽  
M. Habibullah

The paper discusses methods of evaluating the ratchet limit for an elastic/plastic structure subjected to cyclic thermal and mechanical loading. A recently developed minimization theorems by Ponter and Chen [2] provides a generalization of the shakedown limit theorems for histories of load in excess of shakedown. This allows the development of programming methods that locate the ratchet boundary in excess of shakedown. Examples of applications are provided including the performance of a cracked body subjected to cyclic thermal loading. Finally, the theory is used to discuss Kalnins’ [4] proposal that short cut finite element solutions may be used to assess whether a particular loading history lies within a ratchet limit.


1990 ◽  
Vol 112 (3) ◽  
pp. 219-222 ◽  
Author(s):  
S. M. Heinrich ◽  
N. J. Nigro ◽  
A. F. Elkouh ◽  
P. S. Lee

In this paper dimensionless design curves relating fillet height and length to joint cross-sectional area are presented for surface-mount solder joints. Based on an analytical surface tension model, the advantage of these dimensionless curves is that they may be used for arbitrary values of solder density and surface tension. The range of applicability of previously developed approximate formulae for predicting joint dimensions is also investigated. A simple example problem is included to illustrate the use of both the design curves and the approximate formulae.


2000 ◽  
Vol 123 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Krishna Darbha ◽  
Abhijit Dasgupta

In this paper, the authors present a stress analysis technique based on a novel nested finite element methodology (NFEM). The NFEM is similar in concept to an earlier proposed multi-domain Rayleigh-Ritz methodology (Ling, S., 1997, “A Multi-Domain Rayleigh-Ritz Method for Thermomechanical Stress Analysis of Surface Mount Interconnects in Electronic Assemblies,” Ph.D. dissertation, Univ., of Maryland), that is based on a nested multi-field displacement assumption. The nested multi-field displacement technique may be viewed as a localized cascading of the p-type refinement in conventional finite element analysis. The concept and formulation of NFEM are presented in this paper while the application of NFEM to analyze the viscoplastic stress-state in two popular surface mount electronic interconnect styles is presented in Part II of this series. To illustrate the concept of NFEM, the formulation and results are provided for a one-dimensional viscoplastic example.


2021 ◽  
Author(s):  
Imtiaz Ahmed Shaik

Currently in the electronics industry there is a desire to increase component reliability. Fatigue failure in solder joints is an important design consideration for electronic packaging. In through-hole components, fatigue failure of leads has been observed to antecede fatigue failure of solder joints. The main objective of the study for a solder joint in a plated-through-hole bearing the pin during the temperature cycle was to ascertain the thermo mechanical behavior and the dominant deformation mode. The Digital Speckle Correlation (DSC) technique, which is a computer vision technique, was applied for the measurement of solder joint deforamtion for a prescribed outlined temperature and time. The dimensions for the area of the solder joint under study were 21 by 21 um, located at the centre of the hole. And computation of averaged shear strains at 6 data points for this area was done. R Darveaux's constitutive model was applied for the data analysis such as the solder joint yields stress with respect to the time and temperature. On achieving the stress solution, the measured total strains were partitioned into elastic, plastic and creep terms separately and hence the creep strain was evaluated. From the analysis, it was found that the dominant deformation mode was shear deformation due to mismatch of coefficient of thermal expansion between pin and copper plating material of through-hole under thermal loading. And the dominant deformation mechanism was creep strain while stress started to relax at the end of ramp up and continued throughout the test and creep strain rate decreased during high temperature dwell. In Addition, the elastic strain was dominating during the initial stage of thermal cycle but later it was neglibible when compared to creep strain.


2021 ◽  
Author(s):  
Imtiaz Ahmed Shaik

Currently in the electronics industry there is a desire to increase component reliability. Fatigue failure in solder joints is an important design consideration for electronic packaging. In through-hole components, fatigue failure of leads has been observed to antecede fatigue failure of solder joints. The main objective of the study for a solder joint in a plated-through-hole bearing the pin during the temperature cycle was to ascertain the thermo mechanical behavior and the dominant deformation mode. The Digital Speckle Correlation (DSC) technique, which is a computer vision technique, was applied for the measurement of solder joint deforamtion for a prescribed outlined temperature and time. The dimensions for the area of the solder joint under study were 21 by 21 um, located at the centre of the hole. And computation of averaged shear strains at 6 data points for this area was done. R Darveaux's constitutive model was applied for the data analysis such as the solder joint yields stress with respect to the time and temperature. On achieving the stress solution, the measured total strains were partitioned into elastic, plastic and creep terms separately and hence the creep strain was evaluated. From the analysis, it was found that the dominant deformation mode was shear deformation due to mismatch of coefficient of thermal expansion between pin and copper plating material of through-hole under thermal loading. And the dominant deformation mechanism was creep strain while stress started to relax at the end of ramp up and continued throughout the test and creep strain rate decreased during high temperature dwell. In Addition, the elastic strain was dominating during the initial stage of thermal cycle but later it was neglibible when compared to creep strain.


Sign in / Sign up

Export Citation Format

Share Document