Characteristics of Abrasive Waterjet Generated Surfaces and Effects of Cutting Parameters and Structure Vibration

1995 ◽  
Vol 117 (4) ◽  
pp. 516-525 ◽  
Author(s):  
J. Chao ◽  
G. Zhou ◽  
M. C. Leu ◽  
E. Geskin

We use three-dimensional surface topography analysis for evaluating waterjet generated surfaces. The waterjet generated surface is separated into smooth and striation zones, where striation influence is negligible in the smooth zone. It is found that the smooth zone has a random, moderately isotropic texture, with the height distribution nearly Gaussian. The effects of cutting speed, depth of cut, and abrasive size on the surface roughness are studied for the smooth zone and striation zone separately. This provides useful information for controlling process parameters to obtain smooth finished surfaces. Spectral analysis is used to investigate the surface striation and machine structure vibration. It is found that forced vibration of the mechanical structure strongly influences striations generated in the waterjet machining system.

Author(s):  
Kadir Gok ◽  
Hüseyin Sari ◽  
Arif Gok ◽  
Süleyman Neseli ◽  
Erol Turkes ◽  
...  

In this study, milling operations were carried out using AISI 1040 specimens steel in dry cutting conditions. The cutting tools used in the experiment include P20 tool steel and they also have three different approach angles (45°, 60°, 75°) and rake angles (0°, −6°, −12°). In milling experiments, cutting parameters with a depth of cut of 1.5 mm, cutting speed of 193 m/min, and feed rate of 313 mm/min were selected. A comparison was presented between the force values which were obtained by measured value and predicted with numerical simulations, and then a good agreement was found between measured and predicted force values. As result of, it was observed that the rake and approach angles were effective in milling operations.


2020 ◽  
Vol 38 (10A) ◽  
pp. 1489-1503
Author(s):  
Marwa Q. Ibraheem

In this present work use a genetic algorithm for the selection of cutting conditions in milling operation such as cutting speed, feed and depth of cut to investigate the optimal value and the effects of it on the material removal rate and tool wear. The material selected for this work was Ti-6Al-4V Alloy using H13A carbide as a cutting tool. Two objective functions have been adopted gives minimum tool wear and maximum material removal rate that is simultaneously optimized. Finally, it does conclude from the results that the optimal value of cutting speed is (1992.601m/min), depth of cut is (1.55mm) and feed is (148.203mm/rev) for the present work.


2010 ◽  
Vol 447-448 ◽  
pp. 51-54
Author(s):  
Mohd Fazuri Abdullah ◽  
Muhammad Ilman Hakimi Chua Abdullah ◽  
Abu Bakar Sulong ◽  
Jaharah A. Ghani

The effects of different cutting parameters, insert nose radius, cutting speed and feed rates on the surface quality of the stainless steel to be use in medical application. Stainless steel AISI 316 had been machined with three different nose radiuses (0.4 mm 0.8 mm, and 1.2mm), three different cutting speeds (100, 130, 170 m/min) and feed rates (0.1, 0.125, 0.16 mm/rev) while depth of cut keep constant at (0.4 mm). It is seen that the insert nose radius, feed rates, and cutting speed have different effect on the surface roughness. The minimum average surface roughness (0.225µm) has been measured using the nose radius insert (1.2 mm) at lowest feed rate (0.1 mm/rev). The highest surface roughness (1.838µm) has been measured with nose radius insert (0.4 mm) at highest feed rate (0.16 mm/rev). The analysis of ANOVA showed the cutting speed is not dominant in processing for the fine surface finish compared with feed rate and nose radius. Conclusion, surface roughness is decreasing with decreasing of the feed rate. High nose radius produce better surface finish than small nose radius because of the maximum uncut chip thickness decreases with increase of nose radius.


Author(s):  
Prof. Hemant k. Baitule ◽  
Satish Rahangdale ◽  
Vaibhav Kamane ◽  
Saurabh Yende

In any type of machining process the surface roughness plays an important role. In these the product is judge on the basis of their (surface roughness) surface finish. In machining process there are four main cutting parameter i.e. cutting speed, feed rate, depth of cut, spindle speed. For obtaining good surface finish, we can use the hot turning process. In hot turning process we heat the workpiece material and perform turning process multiple time and obtain the reading. The taguchi method is design to perform an experiment and L18 experiment were performed. The result is analyzed by using the analysis of variance (ANOVA) method. The result Obtain by this method may be useful for many other researchers.


2014 ◽  
Vol 68 (4) ◽  
Author(s):  
S. H. Tomadi ◽  
J. A. Ghani ◽  
C. H. Che Haron ◽  
M. S. Kasim ◽  
A. R. Daud

The main objective of this paper is to investigate and optimize the cutting parameters on multiple performance characteristics in end milling of Aluminium Silicon alloy reinforced with Aluminium Nitride (AlSi/AlN MMC) using Taguchi method and Grey relational analysis (GRA). The fabrication of AlSi/AlN MMC was made via stir casting with various volume fraction of particles reinforcement (10%, 15% and 20%). End milling machining was done under dry cutting condition by using two types of cutting tool (uncoated & PVD TiAlN coated carbide). Eighteen experiments (L18) orthogonal array with five factors (type of tool, cutting speed, feed rate, depth of cut, and volume fraction of particles reinforcement) were implemented. The analysis of optimization using GRA concludes that the better results for the combination of lower surface roughness, longer tool life, lower cutting force and higher material removal could be achieved when using uncoated carbide with cutting speed 240m/min, feed 0.4mm/tooth, depth of cut 0.3mm and 15% volume fraction of AlN particles reinforcement. The study confirmed that with a minimum number of experiments, Taguchi method is capable to design the experiments and optimized the cutting parameters for these performance characteristics using GRA for this newly develop material under investigation.


2018 ◽  
Vol 1148 ◽  
pp. 109-114
Author(s):  
M. Balaji ◽  
C.H. Nagaraju ◽  
V.U.S. Vara Prasad ◽  
R. Kalyani ◽  
B. Avinash

The main aim of this work is to analyse the significance of cutting parameters on surface roughness and spindle vibrations while machining the AA6063 alloy. The turning experiments were carried out on a CNC lathe with a constant spindle speed of 1000rpm using carbide tool inserts coated with Tic. The cutting speed, feed rate and depth of cut are chosen as process parameters whose values are varied in between 73.51m/min to 94.24m/min, 0.02 to 0.04 mm/rev and 0.25 to 0.45 mm respectively. For each experiment, the surface roughness parameters and the amplitude plots have been noted for analysis. The output data include surface roughness parameters (Ra,Rq,Rz) measured using Talysurf and vibration parameter as vibration amplitude (mm/sec) at the front end of the spindle in transverse direction using single channel spectrum analyzer (FFT).With the collected data Regression analysis is also performed for finding the optimum parameters. The results show that significant variation of surface irregularities and vibration amplitudes were observed with cutting speed and feed. The optimum cutting speed and feed from the regression analysis were 77.0697m/min and 0.0253mm/rev. for the minimum output parameters. No significant effect of depth of cut on output parameters is identified.


2020 ◽  
Vol 36 ◽  
pp. 28-46
Author(s):  
Youssef Touggui ◽  
Salim Belhadi ◽  
Salah Eddine Mechraoui ◽  
Mohamed Athmane Yallese ◽  
Mustapha Temmar

Stainless steels have gained much attention to be an alternative solution for many manufacturing industries due to their high mechanical properties and corrosion resistance. However, owing to their high ductility, their low thermal conductivity and high tendency to work hardening, these materials are classed as materials difficult to machine. Therefore, the main aim of the study was to examine the effect of cutting parameters such as cutting speed, feed rate and depth of cut on the response parameters including surface roughness (Ra), tangential cutting force (Fz) and cutting power (Pc) during dry turning of AISI 316L using TiCN-TiN PVD cermet tool. As a methodology, the Taguchi L27 orthogonal array parameter design and response surface methodology (RSM)) have been used. Statistical analysis revealed feed rate affected for surface roughness (79.61%) and depth of cut impacted for tangential cutting force and cutting power (62.12% and 35.68%), respectively. According to optimization analysis based on desirability function (DF), cutting speed of 212.837 m/min, 0.08 mm/rev feed rate and 0.1 mm depth of cut were determined to acquire high machined part quality


2015 ◽  
Vol 1089 ◽  
pp. 373-376
Author(s):  
Xing Wei Zheng ◽  
Guo Fu Ying ◽  
Yan Chen ◽  
Yu Can Fu

An experiment of face milling of Invar36 was conducted by using coated carbide insert, the microhardness was tested and the metallographic structure was observed to figure out the principles of work-hardening. The results showed that the depth of work-hardening ranges from 80μm to 160μm among the parameters selected in the experiments. The degree and the depth of work-hardening were significantly affected by the axial depth of cut and feed per tooth. The degree and the depth of work-hardening showed a tendency to increase with the increase of the axial depth of cut and feed per tooth. Compared with the axial depth of cut and feed per tooth, cutting speed had less influence on the degree and depth of work-hardening. The degree and depth of work- hardening decreased slowly with the increase of cutting speed. Metallographic observation showed that work-hardening layer consisted of the thermal force influenced layer and the force influenced layer, while the amorphous metallographic structure was observed in the thermal force influenced layer, and lattice distortion was observed in the force influenced layer.


2011 ◽  
Vol 264-265 ◽  
pp. 1154-1159
Author(s):  
Anayet Ullah Patwari ◽  
A.K.M. Nurul Amin ◽  
S. Alam

Titanium alloys are being widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. Surface roughness is one of the most important requirements in machining of Titanium alloys. This paper describes mathematically the effect of cutting parameters on Surface roughness in end milling of Ti6Al4V. The mathematical model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). Central composite design was employed in developing the surface roughness models in relation to primary cutting parameters. The experimental results indicate that the proposed mathematical models suggested could adequately describe the performance indicators within the limits of the factors that are being investigated. The developed RSM is coupled as a fitness function with genetic algorithm to predict the optimum cutting conditions leading to the least surface roughness value. MATLAB 7.0 toolbox for GA is used to develop GA program. The predicted results are in good agreement with the experimental one and hence the model can be efficiently used to achieve the minimum surface roughness value.


2018 ◽  
Vol 188 ◽  
pp. 02004 ◽  
Author(s):  
Tadeusz Chwalczuk ◽  
Damian Przestacki ◽  
Piotr Szablewski ◽  
Agata Felusiak

The paper presents the discussion about the possibility of optimising heating and cutting parameters for turning under laser assisted machining (LAM) conditions. The samples of Inconel 718 after annealing and ageing were used. The laser heating experiments were carried out on the stand equipped with the CO2 molecular laser. Characterisation of samples was performed by an optical microscope, hardness measurements, scanning electron microscopy (SEM) to ensure the exact depth of heat affect zone range and to optimised further cutting parameters. Different absorbing layers for laser beam impact improvement were tested. Turning trials were performed with constant cutting speed vc = 28 m/min and feed f = 0,2 mm/rev. The influence of depth of cut ap on microstructure and its properties were investigated. It was proven that for sequential LAM dendritic structure appears in the laser affected zone of the Ni-based alloy. Such microstructures cause better machinability of Inconel 718 due to surface softening.


Sign in / Sign up

Export Citation Format

Share Document