The Response of a Centrifugal Pump to Fluctuating Rotational Speed

1995 ◽  
Vol 117 (3) ◽  
pp. 479-484 ◽  
Author(s):  
H. Tsukamoto ◽  
H. Yoneda ◽  
K. Sagara

A theoretical and experimental study has been made on the dynamic characteristics of a centrifugal pump subject to sinusoidal changes in rotational speed. Time-dependent rotational speed, flow-rate, and total pressure rise are measured for a variety of amplitude and frequency of the fluctuating rotational speed. Measured flow-rate as well as total pressure rise is compared with the quasi-steady ones. Unsteady flow analysis is made for a two-dimensional circular cascade by use of the singularity method. The calculated frequency characteristics are compared with the corresponding experimental ones. The deviation of unsteady characteristics from quasi-steady ones is evident, and the numerical results agree qualitatively with the measured ones. It was found that with the increased frequency of rotational speed fluctuations the dynamic characteristics deviate remarkably from quasi-steady ones. Moreover, a criterion for the assumption of quasi-steady change is presented.

Author(s):  
Peng Wu ◽  
Dazhuan Wu ◽  
Leqin Wang

Experimental and numerical studies were carried out to study the transient characteristics of the centrifugal pump during stopping periods. Different stopping schemes were realized by changing the rotational inertia of the flywheels. Transient revolution rotational speed, flow-rate, total pressure rise and torque were measured under different rotational inertia. Experimental results of different operating conditions were compared, and transient hydrodynamics performances of the centrifugal pump model were analyzed. In order to provide boundary conditions for numerical simulations, the revolution curves of the flow-rate and the rotational speed were polynomial fitted. Three dimensional unsteady incompressible viscous flows during stopping periods were studied by using DES model in FLUENT. Results show that the hydrodynamic characteristics of numeric and experiment agree well. The transient effect is not so evident, and the quasi-steady assumption is acceptable during most part of coastdown process. The pump characteristics are further explained by analyzing the relative velocity on the middle stream surfaces. At the end of the stopping period, the transient vortex evolution between blades is the main reason why the transient curves deviates the steady curve. The studies can help understand the operating characteristics of centrifugal pump when power failure accident occurs.


Author(s):  
P. V. Ramakrishna ◽  
M. Govardhan

The present numerical work studies the flow field in subsonic axial compressor stator passages for: (a) preceding rotor sweep (b) preceding rotor re-staggering (three stagger angle changes: 0°, +3° and +5°); and (c) stator sweeping (two 20° forward sweep schemes). The following are the motives for the study: at the off-design conditions, compressor rotors are re-staggered to alleviate the stage mismatching by adjusting the rows to the operating flow incidence. Fundamental to this is the understanding of the effects of rotor re-staggering on the downstream component. Secondly, sweeping the rotor stages alters the axial distance between the successive rotor-stator stages and necessitates that the stator vanes must also be swept. To the best of the author’s knowledge, stator sweeping to suit such scenarios has not been reported. The computational model for the study utilizes well resolved hexahedral grids. A commercial CFD package ANSYS® CFX 11.0 was used with standard k-ω turbulence model for the simulations. CFD results were well validated with experiments. The following observations were made: (1) When the rotor passage is closed by re-staggering, with the same mass flow rate and the same stator passage area, stators were subjected to negative incidences. (2) Effect of stator sweeping on the upstream rotor flow field is insignificant. Comparison of total pressure rise carried by the downstream stators suggests that an appropriate redesign of stator is essential to match with the swept rotors. (3) While sweeping the stator is not recommended, axial sweeping is preferable over true sweeping when it is necessary.


Author(s):  
S. M. Miner ◽  
R. D. Flack ◽  
P. E. Allaire

Two dimensional potential flow was used to determine the velocity field within a laboratory centrifugal pump. In particular, the finite element technique was used to model the impeller and volute simultaneously. The rotation of the impeller within the volute was simulated by using steady state solutions with the impeller in 10 different angular orientations. This allowed the interaction between the impeller and the volute to develop naturally as a result of the solution. The results for the complete pump model showed that there are circumferential asymmetries in the velocity field, even at the design flow rate. Differences in the relative velocity components were as large as 0.12 m/sec for the radial component and 0.38 m/sec for the tangential component, at the impeller exit. The magnitude of these variations was roughly 25% of the magnitude of the average radial and tangential velocities at the impeller exit. These asymmetries were even more pronounced at off design flow rates. The velocity field was also used to determine the location of the tongue stagnation point and to calculate the slip within the impeller. The stagnation point moved from the discharge side of the tongue to the impeller side of the tongue, as the flow rate increased from below design flow to above design flow. At design flow, values of slip ranged from 0.96 to 0.71, from impeller inlet to impeller exit. For all three types of data (velocity profiles, stagnation point location, and slip factor) comparison was made to laser velocimeter data, taken for the same pump. At the design flow, the computational and experimental results agreed to within 17% for the velocity magnitude, and 2° for the flow angle. The stagnation point locations coincided for the computational and experimental results, and the values for slip agreed to within 10%.


2021 ◽  
Author(s):  
Raghuvaran D. ◽  
Satvik Shenoy ◽  
Srinivas G

Abstract Axial flow fans (AFF) are extensively used in various industrial sectors, usually with flows of low resistance and high mass flow rates. The blades, the hub and the shroud are the three major parts of an AFF. Various kinds of optimisation can be implemented to improve the performance of an AFF. The most common type is found to be geometric optimisation including variation in number of blades, modification in hub and shroud radius, change in angle of attack and blade twist, etc. After validation of simulation model and carrying out a grid independence test, parametric analysis was done on an 11-bladed AFF with a shroud of uniform radius using ANSYS Fluent. The rotational speed of the fan and the velocity at fan inlet were the primary variables of the study. The variation in outlet mass flow rate and total pressure was studied for both compressible and incompressible ambient flows. Relation of mass flow rate and total pressure with inlet velocity is observed to be linear and exponential respectively. On the other hand, mass flow rate and total pressure have nearly linear relationship with rotational speed. A comparison of several different axial flow tracks with the baseline case fills one of the research gaps.


2020 ◽  
Vol 34 (26) ◽  
pp. 2050286
Author(s):  
Fen Lai ◽  
Xiangyuan Zhu ◽  
Yongqiang Duan ◽  
Guojun Li

The performance and service life of centrifugal pumps can be influenced by the clocking effect. In this study, 3D numerical calculations based on the k-omega shear stress transport model are conducted to investigate the clocking effect in a centrifugal pump. Time-averaged behavior and transient behavior are analyzed. Results show that the optimum diffuser installation angle in the centrifugal pump is [Formula: see text] due to the minimum total pressure loss and radial force acting on the impeller. Total pressure loss, particularly in the volute, is considerably influenced by the clocking effect. The difference in total pressure loss in the volute at different clocking positions is 2.75 m under the design flow rate. The large total pressure loss in the volute is primarily caused by the large total pressure gradient within the vicinity of the volute tongue. The radial force acting on the impeller is also considerably affected by the clocking effect. When the diffuser installation angle is [Formula: see text], flow rate fluctuations in the volute and impeller passage are minimal, and flow rate distribution in the diffuser passage is more uniform than those in other diffuser installation angles. Moreover, static pressure fluctuations in the impeller midsection and the diffuser inlet section are at the minimum value. These phenomena explain the minimum radial force acting on the impeller. The findings of this study can provide a useful reference for the design of centrifugal pumps.


Author(s):  
Naoki Matsushita ◽  
Akinori Furukawa ◽  
Kusuo Okuma ◽  
Satoshi Watanabe

A tandem arrangement of double rotating cascades and single diffuser cascade, proposed as a centrifugal pump with high performance in air-water two-phase flow condition, yields lower head due to the smallness of the impeller outlet in comparison with a impeller with large outlet diameter and no diffuser. Influences of impeller diameter change and installation of diffuser blades on two-phase flow performance were experimentally investigated under the case of the same volute casing. As the result, the similarity law of the diameter of impeller having the similar blade geometry and the rotational speed is satisfied even in two-phase flow condition. Comparing pump performances between a large impeller without diffuser blades and a small one with diffuser blades, higher two-phase flow performance is obtained by controlling the rotational speed of a small impeller with diffuser blades in the range of small water flow rates, while a large impeller with no diffuser gives high performance in the range of high water flow rate and small air flow rate.


2004 ◽  
Vol 126 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Soon-Sam Hong ◽  
Shin-Hyoung Kang

The effects of circumferential outlet distortion of a centrifugal pump diffuser on the impeller exit flow were investigated. A fence with sinusoidal width variation was installed at the vaneless diffuser exit. The flow field was measured at the impeller exit with and without the fence, using a hot film probe and an unsteady pressure sensor. Flow parameters varied with the circumferential position and the mean flow parameters plotted against the local flow rate at each circumferential position showed loops along the quasi-steady curves, which were obtained from the result without the fence. Simple theoretical calculations were used to predict the velocity components at the impeller exit with the relative flow angle or total pressure assumed. Good result was obtained when the relative flow angle was assumed to vary quasi-steadily, not constant with the local flow rate. The radial velocity was also reasonably predicted when the total pressure was assumed to vary quasi-steadily. A simple method is proposed to predict the impeller exit flow with downstream blockage in two-step sequence: the first step deals with the diffuser alone to obtain static pressure distribution at the diffuser inlet, while the second step deals with the impeller alone to obtain velocity components distribution at the impeller exit.


1995 ◽  
Vol 117 (1) ◽  
pp. 123-128 ◽  
Author(s):  
P. J. Lefebvre ◽  
W. P. Barker

The effect of transient operation on the hydrodynamic performance of a centrifugal pump impeller was investigated experimentally. All experiments were conducted in the Naval Undersea Warfare Center’s Impeller Test Facility (ITF), which was designed and built for transient and steady-state operation impeller research. The ITF provides transient operation through simultaneous control of both impeller rotational speed and flow rate over time. The impeller was accelerated from rest with peak angular accelerations up to 720 radians/s2 and inlet flow mean accelerations up to 1.7 g, reaching a peak rotational speed of 2400 rpm and a flow rate of 416 l/s. The impeller was then decelerated to rest. Results showed substantial transient effects in overall impeller performance and demonstrated that the quasisteady assumptions commonly used for the design of impellers that operate under high transient (accelerating or decelerating) conditions are not valid.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Phil Ligrani ◽  
Hui Jiang ◽  
Benjamin Lund ◽  
Jae Sik Jin

A miniature viscous disk pump (VDP) is utilized to characterize and quantify non-Newtonian fluid deviations due to non-Newtonian influences relative to Newtonian flow behavior. Such deviations from Newtonian behavior are induced by adding different concentrations of sucrose to purified water, with increasing non-Newtonian characteristics as sucrose concentration increases from 0% (pure water) to 10% by mass. The VDP consists of a 10.16 mm diameter disk that rotates above a C-shaped channel with inner and outer radii of 1.19 mm, and 2.38 mm, respectively, and a channel depth of 200 μm. Fluid inlet and outlet ports are located at the ends of the C-shaped channel. Within the present study, experimental data are given for rotational speeds of 1200–2500 rpm, fluid viscosities of 0.001–0.00134 Pa s, pressure rises of 0–220 Pa, and flow rates up to approximately 0.00000005 m3/s. The theory of Flumerfelt is modified and adapted for application to the present VDP environment. Included is a new development of expressions for dimensionless volumetric flow rate, and normalized local circumferential velocity for Newtonian and non-Newtonian fluid flows. To quantify deviations due to the magnitude non-Newtonian flow influences, a new pressure rise parameter is employed, which represents the dimensional pressure rise change at a particular flow rate and sucrose concentration, as the flow changes from Newtonian to non-Newtonian behavior. For 5% and 10% sucrose solutions at rotational speeds of 1200–2500 rpm, this parameter increases as the disk dimensional rotational speed increases and as the volumetric flow rate decreases. Associated magnitudes of the pressure difference parameter show that the fluid with the larger sucrose concentration (by mass) produces significantly larger differences between Newtonian and non-Newtonian fluid flow, for each value of dimensional volumetric flow rate. For each disc rotational speed, compared to Newtonian data, dimensional pressure rise variations with dimensional volumetric flow rate, which are associated with the non-Newtonian data, are generally lower when compared at a particular volumetric flow rate. Agreement with analytic results, for any given flow rate, rotational speed, and flow passage height, validates the shear stress model employed to represent non-Newtonian behavior, as well as the analytic equations and tools (based upon the Navier–Stokes equations) which are employed to predict measured behavior over the investigated range of experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document