Experimental Study of Turbulent Concentration Flow Field in the Wake of a Bluff Body

1997 ◽  
Vol 119 (2) ◽  
pp. 263-270 ◽  
Author(s):  
R. Balachandar ◽  
Vincent H. Chu ◽  
Jianbo Zhang

Experiments were conducted to determine the turbulent concentration field in the wake of a normal flat plate. Dye was introduced behind the plate as the tracer. The measurement of the dye concentration was carried out using an optical colorimeter in the near wake, covering a distance of five to thirty plate widths downstream of the body. The mean, r.m.s., and intermittency profiles of the concentration field were obtained at a number of cross sections. Phase averaging was also carried out to determine the structure of the large scale eddies. Typical maximum concentration levels in the core of the eddies were found to be two to four times larger than the corresponding mean values. The widths of the concentration profiles in the near wake are 1.5 to 2.5 times wider than the corresponding widths of the velocity profiles. The present dye concentration data obtained for the normal flat plate are unique and complement a small number of previous experimental investigations of the scalar field based on temperature measurements in the wake of circular cylinders.

2018 ◽  
Vol 858 ◽  
pp. 917-948 ◽  
Author(s):  
Darwin Darakananda ◽  
Jeff D. Eldredge

Inviscid vortex models have been demonstrated to capture the essential physics of massively separated flows past aerodynamic surfaces, but they become computationally expensive as coherent vortex structures are formed and the wake is developed. In this work, we present a two-dimensional vortex model in which vortex sheets represent shear layers that separate from sharp edges of the body and point vortices represent the rolled-up cores of these shear layers and the other coherent vortices in the wake. We develop a circulation transfer procedure that enables each vortex sheet to feed its circulation into a point vortex instead of rolling up. This procedure reduces the number of computational elements required to capture the dynamics of vortex formation while eliminating the spurious force that manifests when transferring circulation between vortex elements. By tuning the rate at which the vortex sheets are siphoned into the point vortices, we can adjust the balance between the model’s dimensionality and dynamical richness, enabling it to span the entire taxonomy of inviscid vortex models. This hybrid model can capture the development and subsequent shedding of the starting vortices with insignificant wall-clock time and remain sufficiently low-dimensional to simulate long-time-horizon events such as periodic bluff-body shedding. We demonstrate the viability of the method by modelling the impulsive translation of a wing at various fixed angles of attack, pitch-up manoeuvres that linearly increase the angle of attack from $0^{\circ }$ to $90^{\circ }$, and oscillatory pitching and heaving. We show that the proposed model correctly predicts the dynamics of large-scale vortical structures in the flow by comparing the distributions of vorticity and force responses from results of the proposed model with a model using only vortex sheets and, in some cases, high-fidelity viscous simulation.


Starting from the differential equation of mass transfer in laminar flow and the appropriate boundary condition, expressions are derived for the rate of mass transfer from ( a ) a flat plate in a longitudinal fluid stream, ( b ) a vertical flat plate by natural convection, ( c ) the forward stagnation point of a sphere in a fluid stream. Only outward mass transfer is considered; this corresponds to blowing outwards from the plate at a rate inversely proportional to the boundary-layer thickness. The Kármán-Pohlhausen-Kroujiline method is used. Where appropriate the Prandtl or Schmidt number has been taken as 0⋅71. The calculations are valid for all mass-transfer processes for which a single diffusion coefficient can be ascribed to the diffusing property, but are particularly relevant to the combustion of liquid fuels, for which the outward mass-transfer rates are so high that important deviations occur from boundary-layer profiles without mass transfer. Despite the great temperature variations present in boundary layers with combustion, mean values for the fluid properties are assumed. In the case of natural convection, it is assumed that the body forces on the fluid in the boundary layer are everywhere zero; this leads to a less serious over-estimate of the buoyancy than the usual assumptions which are valid only for small temperature differences.


Experiments on the near wake of a cylinder will be discribed in an attempt to present a coherent picture of the events encountered as the Reynolds number increases from small values up to values of a few thousand. Much work on this subject has already been done, but there are gaps in our description of these flows as well as more fundamental deficiencies in our understanding of them. The subject has been reviewed several times and most recently by Berger & Wille (1972) whose paper covers much of the ground that will be discussed again here. The present work may be regarded as built upon this latest review. I remember with gratitude many helpful discussions with the late Rudolph Wille who contributed so much to this subject. The investigation has concentrated on circular cylinders, but the wakes of bluff cylinders of different cross sectional shapes have also been observed. Bluff cylinders in general are considered in §§4 and 5, together with the effect of splitter plates on circular cylinders in §9. The experiments concern, almost exclusively, flow visualization of the wakes by means of dye washed from the bodies. The patterns of dye observed are, therefore, filament line representations of the flow leaving the separation lines on the body. It must be stressed that the dye does not make visible the vorticity bearing fluid because at low Reynolds number, vorticity diffuses considerably more rapidly than does dye. The ratio of the molecular diffusivity of momentum to that of mass of dye is of the order of 100.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8496
Author(s):  
Ussama Ali ◽  
Md. Islam ◽  
Isam Janajreh ◽  
Yap Fatt ◽  
Md. Mahbub Alam

This study is an effort to encapsulate the fundamentals and major findings in the area of fluid-solid interaction, particularly the flow-induced vibrations (FIV). Periodic flow separation and vortex shedding stretching downstream induce dynamic fluid forces on the bluff body and results in oscillatory motion of the body. The motion is generally referred to as flow-induced vibrations. FIV is a dynamic phenomenon as the motion, or the vibration of the body is subjected to the continuously changing fluid forces. Sometimes FIV is modeled as forced vibrations to mimic the vibration response due to the fluid forces. FIV is a deep concern of engineers for the design of modern heat exchangers, particularly the shell-and-tube type, as it is the major cause for the tube failures. Effect of important parameters such as Reynolds number, spacing ratio, damping coefficient, mass ratio and reduced velocity on the vibration characteristics (such as Strouhal number, vortex shedding, vibration frequency and amplitude, etc.) is summarized. Flow over a bluff body with wakes developed has been studied widely in the past decades. Several review articles are available in the literature on the area of vortex shedding and FIV. None of them, however, discusses the cases of FIV with heat transfer. In particular systems, FIV is often coupled to heat transfer, e.g., in nuclear power plants, FIV causes wear and tear to heat exchangers, which can eventually lead to catastrophic failure. As the circular shape is the most common shape for tubes and pipes encountered in practice, this review will only focus on the FIV of circular cylinders. In this attempt, FIV of single and multiple cylinders in staggered arrangement, including tandem and side-by-side arrangement is summarized for heated and unheated cylinder(s) in the one- and two-degree of freedom. The review also synthesizes the effect of fouling on heat transfer and flow characteristics. Finally, research prospects for heated circular cylinders are also stated.


1979 ◽  
Vol 92 (1) ◽  
pp. 171-205 ◽  
Author(s):  
F. T. Smith

The asymptotic theory for the laminar, incompressible, separating and reattaching flow past the bluff body is based on an extension of Kirchhoff's (1869) free-streamline solution. The flow field (only the upper half of which is discussed since we consider a symmetric body and flow) consists of two basic parts. The first is the flow on the body scalel*, which is described to leading order by the Kirchhoff solution with smooth inviscid separation, but with an$O(Re^{-\frac{1}{16}})$modification to explain fully the viscous separation (hereRe([Gt ] 1) is the Reynolds number). The influence of this$O(Re^{-\frac{1}{16}})$modification is determined for the circular cylinder. The second part is the large-scale flow, comprising mainly the eddy and the ultimate wake. The eddy has length scaleO(Rel*), widthO(Re½l*) and is of elliptical shape to keep the eddy pressure almost uniform. The ultimate wake is determined numerically and fixes the eddy length. The (asymptotically small) back pressure from the eddy acts (on the body scale) both in the free stream and in the eddy, and it has a marked effect at moderate Reynolds numbers; combined with the Kirchhoff solution, it predicts the pressure drag on a circular cylinder accurately, to within 10% whenRe= 5 and to within 4% whenRe= 50. Other predictions, for the eddy length and width, the front pressure and the eddy pressure, also show encouraging agreement with experiments and Navier-Stokes solutions at moderate Reynolds numbers (of about 30), both for the circular cylinder and the normal flat plate. Finally, an analysis in the appendix indicates that, in wind-tunnel experiments, the tunnel walls (even if widely spaced) can exert considerable influence on the eddy properties, eventually forcing an upper bound on the eddy width asReincreases instead of theO(l*Re½) growth appropriate to the unbounded flow situation.


2018 ◽  
Vol 180 ◽  
pp. 02024
Author(s):  
Firat Ekinci ◽  
Erhan Firat ◽  
Göktürk M. Özkan ◽  
Hüseyin Akilli

In this study, the flow behind a circular cylinder with a pair of outer identical guiding plates was investigated using particle image velocimetry (PIV) for various angular positions of the plates (i.e. α=±70°, ±100°, and ±130°). The gaps between these plates and cylinder are equal and are 0.3D. Experiments were carried out at a subcritical Reynolds (Re=ρ·U∞·D/μ) number of 7500, based on the cylinder diameter (D) and the flow velocity (U∞). The features of the near-wake with and without the guiding plates were interpreted in terms of patterns of time-averaged vorticity and streamlines, time-averaged and fluctuating velocity components. The spectral analysis was also carried out to determine the time-dependent variation of the transverse velocity at given locations in the near-wake. Two-dimensional computations of flow around circular cylinders with and without guiding plates have also been performed to predict the timeaveraged and root-mean-square of force coefficients of the various models. It was seen that the guiding plates at an appropriate angular position can lead to substantial attenuation, or retardation, of the process of large-scale vortex formation in the near-wake, thus can lead to vortex-induced vibration (VIV) suppression without any increase in drag.


1991 ◽  
Vol 113 (4) ◽  
pp. 526-537 ◽  
Author(s):  
O. M. Griffin ◽  
M. S. Hall

The results of recent experiments demonstrate that the phenomenon of vortex shedding resonance or lock-on is observed also when a bluff body is placed in an incident mean flow with a periodic component superimposed upon it. This form of vortex shedding and lock-on exhibits a particularly strong resonance between the flow perturbations and the vortices, and provides one of several promising means for modification and control of the basic formation and stability mechanisms in the near-wake of a bluff body. Examples are given of recent direct numerical simulations of the vortex lock-on in the periodic flow. These agree well with the results of experiments. A discussion also is given of vortex lock-on due to body oscillations both normal to and in-line with the incident mean flow, rotational oscillations of the body, and of the effect of sound on lock-on. The lock-on phenomenon is discussed in the overall context of active and passive wake control, on the basis of these and other recent and related results, with particular emphasis placed on active control of the circular cylinder wake.


Author(s):  
Sean Lawrence ◽  
Callum Atkinson ◽  
Julio Soria

Wake flows are prevalent in a wide range of engineering applications and their behaviour can significantly impact engineering design and performance. A considerable body of work exists on smooth body wake structures and flows over rough bodies, however, there is a lack of fundamental physical understanding of the amalgamation of the two fields. Two-component two-dimension particle image velocimetry (2C-2D PIV) is used to investigate the effect of surface roughness on the formation of large scale structures in the near wake of a thin flat plate. Both high-speed and low-speed, high-resolution PIV setups have been used to investigate the effect of surface roughness on the boundary layer and the near wake of the plate to gain insight into the underlying physical connection between these regions.


2019 ◽  
Vol 863 ◽  
pp. 1123-1156 ◽  
Author(s):  
Thomas J. Lambert ◽  
Bojan Vukasinovic ◽  
Ari Glezer

Flow-induced oscillations of a wire-mounted, freely yawing axisymmetric round bluff body and the induced loads are regulated in wind tunnel experiments (Reynolds number $60\,000<Re_{D}<200\,000$) by altering the reciprocal coupling between the body and its near wake. This coupling is controlled by exploiting the receptivity of the azimuthal separating shear layer at the body’s aft end to controlled pulsed perturbations effected by two diametrically opposed and independently controlled aft-facing rectangular synthetic jets. The model is supported by a thin vertical wire upstream of its centre of pressure, and prescribed modification of the time-dependent flow-induced loads enables active control of its yaw attitude. The dynamics of the interactions and coupling between the actuation and the cross-flow are investigated using simultaneous, time-resolved measurements of the body’s position and phase-locked particle image velocimetry measurements in the yawing plane. It is shown that the interactions between trains of small-scale actuation vortices and the local segment of the aft-separating azimuthal shear layer lead to partial attachment, and the ensuing asymmetric modifications of the near-wake vorticity field occur within 15 actuation cycles (approximately three convective time scales), which is in agreement with measurements of the flow loads in an earlier study. Open- and closed-loop actuation can be coupled to the natural, unstable motion of the body and thereby affect desired attitude control within 100 convective time scales, as is demonstrated by suppression or enhancement of the lateral motion.


2020 ◽  
Vol 8 (5) ◽  
pp. 365
Author(s):  
Li Zou ◽  
Kun Wang ◽  
Yichen Jiang ◽  
Aimin Wang ◽  
Tiezhi Sun

Owing to the rapid development of the offshore wind power technology and increasing capacity of wind turbines, vertical-axis wind turbines (VAWTs) have experienced a great development. Nevertheless, the VAWT wake effect, which affects the power generation efficiency and rotor fatigue life, has not been thoroughly understood. In this study, the mid-span wake measurements on a VAWT in six different configurations were conducted. This study aimed to investigate the effect of solidity on near wake instability of vertical-axis wind turbine. By using the wavelet analysis method to analyse the measured velocity (or pressure) time series signals on a multi-scale and with multi-resolution, the dynamic characteristics of the coherent vortex structures in the wake evolution process were determined. The results show that with increasing solidity, the VAWT wake develops into a bluff body wake mode. In addition, a characteristic frequency that is lower than the low-frequency large-scale vortex shedding frequency occur. The wavelet transform was used to decompose and reconstruct the measured data, and the relationship between the low-frequency large-scale vortex shedding and lower frequency pulsation was established. The results provide important data for numerical modelling and new insights into the physical mechanism of the VAWT wake evolution into a bluff body wake.


Sign in / Sign up

Export Citation Format

Share Document