scholarly journals Tip Vortex Cavitation on an Oscillating Hydrofoil

1997 ◽  
Vol 119 (4) ◽  
pp. 752-758 ◽  
Author(s):  
O. Boulon ◽  
J. P. Franc ◽  
J. M. Michel

This paper discusses tests conducted in the hydrodynamic tunnel of the University of Grenoble on a 3D oscillating hydrofoil. Visualization of unsteady tip vortex cavitation indicates a strong influence of the water nuclei content. The investigation was focused on the influence of the oscillation frequency on tip vortex cavitation inception. For very low nuclei content, cavitation inception is strongly delayed as compared to the steady-state results at very small oscillation frequencies. This delay is significantly reduced by nuclei seeding. The results can be explained by assuming that the time required for the inception of cavitation in the tip vortex corresponds to the time necessary for a cavitation nucleus to be captured by the vortex core.

2014 ◽  
Vol 58 (03) ◽  
pp. 157-167
Author(s):  
Sang-LL Park ◽  
Seung-Jae Lee ◽  
Geuk-Sang You ◽  
Jung-Chun Suh

Normally, tip vortex cavitation (TVC) is first observed at a certain location behind the tips of propeller blades. Therefore, TVC is important for naval ships and research vessels that require raising the cavitation inception speed to maximum possible values. The concepts for alleviating the tip vortex are summarized by Platzer and Souders (1979), who carried out a thorough literature survey. Active control of TVC involves the injection of a polymer or water from the blade tip. The main effect of such mass injection (both water and polymer solutions) into the vortex core is an increase in the core radius, consequently delaying TVC inception. However, the location of the injection port needs to be selected with great care to ensure that the mass injection is effective in delaying TVC inception. In the present study, we propose a semi-active control scheme that is achieved by attaching a thread at the propeller tip. The main idea of a semi-active control is that because of its flexibility, the attached thread can be sucked into the low-pressure region closer to the vortex core center. An experimental study using a scale model was carried out in the cavitation tunnel at the Seoul National University. It was found that a flexible thread can effectively suppress the occurrence of TVC under the design condition for a model propeller.


1999 ◽  
Vol 121 (1) ◽  
pp. 198-204 ◽  
Author(s):  
Chao-Tsung Hsiao ◽  
Laura L. Pauley

The Rayleigh-Plesset bubble dynamics equation coupled with the bubble motion equation developed by Johnson and Hsieh was applied to study the real flow effects on the prediction of cavitation inception in tip vortex flows. A three-dimensional steady-state tip vortex flow obtained from a Reynolds-Averaged Navier-Stokes computation was used as a prescribed flow field through which the bubble was passively convected. A “window of opportunity” through which a candidate bubble must pass in order to be drawn into the tip-vortex core and cavitate was determined for different initial bubble sizes. It was found that bubbles with larger initial size can be entrained into the tip-vortex core from a larger window size and also had a higher cavitation inception number.


2020 ◽  
Vol 10 (17) ◽  
pp. 5897 ◽  
Author(s):  
Garam Ku ◽  
Cheolung Cheong ◽  
Hanshin Seol

In this study, a numerical methodology is developed to investigate the tip-vortex cavitation of NACA16-020 wings and their flow noise. The numerical method consists of a sequential one-way coupled application of Eulerian and Lagrangian approaches. First, the Eulerian method based on Reynolds-averaged Navier–Stokes equation is applied to predict the single-phase flow field around the wing, with particular emphasis on capturing high-resolution tip-vortex flow structures. Subsequently, the tip-vortex flow field is regenerated by applying the Scully vortex model. Secondly, the Lagrangian approach is applied to predict the tip-vortex cavitation inception and noise of the wing. The initial nuclei are distributed upstream of the wing. The subsequent time-varying size and position of each nucleus are traced by solving spherically symmetric bubble dynamics equations for the nuclei in combination with the flow field predicted from the Eulerian approach. The acoustic pressure at the observer position is computed by modelling each bubble as a point source. The numerical results of the acoustic pressure spectrum are best matched to the measured results when the nuclei number density of freshwater is used. Finally, the current numerical method is applied to the flows of various cavitation numbers. The results reveal that the cavitation inception determined by the predicted acoustic pressure spectrum well matched the experimental result.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Young T. Shen ◽  
Scott Gowing ◽  
Stuart Jessup

Tip vortices generated by marine lifting surfaces such as propeller blades, ship rudders, hydrofoil wings, and antiroll fins can lead to cavitation. Prediction of the onset of this cavitation depends on model tests at Reynolds numbers much lower than those for the corresponding full-scale flows. The effect of Reynolds number variations on the scaling of tip vortex cavitation inception is investigated using a theoretical flow similarity approach. The ratio of the circulations in the full-scale and model-scale trailing vortices is obtained by assuming that the spanwise distributions of the section lift coefficients are the same between the model-scale and the full-scale. The vortex pressure distributions and core sizes are derived using the Rankine vortex model and McCormick’s assumption about the dependence of the vortex core size on the boundary layer thickness at the tip region. Using a logarithmic law to describe the velocity profile in the boundary layer over a large range of Reynolds number, the boundary layer thickness becomes dependent on the Reynolds number to a varying power. In deriving the scaling of the cavitation inception index as the ratio of Reynolds numbers to an exponent m, the values of m are not constant and are dependent on the values of the model- and full-scale Reynolds numbers themselves. This contrasts traditional scaling for which m is treated as a fixed value that is independent of Reynolds numbers. At very high Reynolds numbers, the present theory predicts the value of m to approach zero, consistent with the trend of these flows to become inviscid. Comparison of the present theory with available experimental data shows promising results, especially with recent results from high Reynolds number tests. Numerical examples of the values of m are given for different model- to full-scale sizes and Reynolds numbers.


2016 ◽  
Vol 125 ◽  
pp. 124-133 ◽  
Author(s):  
Youjiang Wang ◽  
Moustafa Abdel-Maksoud ◽  
Keqi Wang ◽  
Baowei Song

1998 ◽  
Vol 120 (4) ◽  
pp. 808-817 ◽  
Author(s):  
Ivar Hordnes ◽  
Sheldon I. Green

Sea trials of a 45 ft seine boat, fitted first with a conventional tip, and subsequently with a ducted tip, 36 in. diameter propeller have been conducted. The trials consisted of careful propeller efficiency measurements at a number of advance ratios, and underwater video imaging of the different propellers under Bollard pull conditions. The trials have shown that flow-through ducts installed at the blade tips suppress the tip vortex roll-up, thus resulting in a substantial delay in the onset of tip vortex cavitation. The cavitation inception index for the ducted tip propeller is 50 percent lower than for the conventional propeller. This cavitation improvement comes without any efficiency penalty. In fact, the efficiency of the ducted tip propeller is up to 6 percent higher (at high advance ratios) than the efficiency of the same propeller fitted with conventional tips. The ducted tip propeller was originally thought to be useful only for boats with heavily loaded propellers, such as tug boats and trawlers. The current research has shown that the ducted tips may have much broader application.


1999 ◽  
Vol 390 ◽  
pp. 1-23 ◽  
Author(s):  
OLIVIER BOULON ◽  
MATHIEU CALLENAERE ◽  
JEAN-PIERRE FRANC ◽  
JEAN-MARIE MICHEL

The present paper is devoted to an analysis of tip vortex cavitation under confined situations. The tip vortex is generated by a three-dimensional foil of elliptical planform, and the confinement is achieved by flat plates set perpendicular to the span, at an adjustable distance from the tip. In the range of variation of the boundary-layer thickness investigated, no significant interaction was observed between the tip vortex and the boundary layer which develops on the confinement plate. In particular, the cavitation inception index for tip vortex cavitation does not depend significantly upon the length of the plate upstream of the foil. On the contrary, tip clearance has a strong influence on the non-cavitating structure of the tip vortex and consequently on the inception of cavitation in its core. The tangential velocity profiles measured by a laser-Doppler velocimetry (LDV) technique through the vortex, between the suction and the pressure sides of the foil, are strongly asymmetric near the tip. They become more and more symmetric downstream and the confinement speeds up the symmetrization process. When the tip clearance is reduced to a few millimetres, the two extrema of the velocity profiles increase. This increase results in a decrease of the minimum pressure in the vortex centre and accounts for the smaller resistance to cavitation observed when tip clearance is reduced. For smaller values of tip clearance, a reduction of tip clearance induces on the contrary a significant reduction in the maxima of the tangential velocity together with a significant increase in the size of the vortex core estimated along the confinement plate. Hence, the resistance to cavitation is much higher for such small values of tip clearance and in practice, no tip vortex cavitation is observed for tip clearances below 1.5 mm. The cavitation number for the inception of tip vortex cavitation does not correlate satisfactorily with the lift coefficient, contrary to classical results obtained without any confinement. Owing to the specificity introduced by the confinement, the usual procedure developed in an infinite medium to estimate the vortex strength from LDV measurements is not applicable here. Hence, a new quantity homogeneous to a circulation had to be defined on the basis of the maximum tangential velocity and the core size, which proved to be better correlated to the cavitation inception data.


Author(s):  
Young T. Shen ◽  
Stuart Jessup ◽  
Scott Gowing

Tip vortices that are generated by marine lifting surfaces such as propeller blades, ship rudders, hydrofoil wings, and anti-roll fins can lead to cavitation. Prediction of the onset of this cavitation depends on model tests at Reynolds numbers much lower than those for the corresponding full-scale flows. The effect of Reynolds number variations on the scaling of tip vortex cavitation inception is investigated using a theoretical flow similarity approach. The ratio of the circulations in the full-scale and model-scale trailing vortices is obtained by assuming that the spanwise section lift coefficient distributions are the same between model and full-scale. The vortex pressure distributions and core sizes are derived using the Rankine vortex model and McCormick’s assumption about the dependence of the vortex core size on the boundary layer thickness at the tip region. Using a logarithmic law to describe the velocity profile in the boundary layer over a large range of Reynolds number, the boundary layer thickness becomes dependent on the Reynolds number to a varying power. In deriving the cavitation inception scaling in the traditional scaling format of σif / σim = (Ref/Rem)n, the values of n are not constant and depend on the values of Ref and Rem themselves. This contrasts traditional scaling for which n is treated as a fixed value that is independent of Reynolds numbers. At very high Reynolds numbers, the present theory predicts the value of n to approach zero, consistent with the trend of these flows to become inviscid. Comparison of the present theory with available experimental data shows promising results, especially with recent results from high Reynolds number tests. Numerical examples are given of the values of n for different model to full-scale sizes and Reynolds numbers.


Author(s):  
Chao-Tsung Hsiao ◽  
Georges L. Chahine

A Surface-Averaged Pressure (SAP) spherical bubble dynamics model accounting for a statistical nuclei size distribution was used to model the acoustic signals generated by cavitating bubbles near inception in a tip vortex flow. The flow field generated by finite-span elliptic hydrofoils is obtained by Reynolds-Averaged Navier-Stokes computations. An “acoustic” criterion which defines the cavitation inception by counting the number of acoustical signal peaks that exceed a certain level per unit time was applied to deduce the cavitation inception number for different scales. It was found that the larger scale results in more cavitation inception events per unite time because more nuclei are excited by the tip vortex at the larger scale. The nuclei size was seen to have an important effect on cavitation inception number with scaling effects due to nuclei increasing as nuclei sizes decreases.


Sign in / Sign up

Export Citation Format

Share Document