Kinematic Geometry of Wheeled Vehicle Systems

1999 ◽  
Vol 121 (1) ◽  
pp. 50-56 ◽  
Author(s):  
S. V. Sreenivasan ◽  
P. Nanua

This paper utilizes a kinematic-geometric approach to study the first-order motion characteristics of wheeled vehicles on even and uneven terrain. The results obtained from first-order studies are compared to those obtained from second order kinematic analyses, and special situations where the first-order analysis is inadequate are discussed. This approach is particularly suited for studying actively actuated vehicles since their designs typically do not include intentional passive compliances. It is shown that if a vehicle-terrain combination satisfies certain geometric conditions, for instance when a wheeled vehicle operates on even terrain or on a spherical surface, the system possesses a singularity—it possesses finite range mobility that is higher than the one obtained using Kutzbach criterion. On general uneven terrain, the same vehicles require undesirable ‘kinematic slipping’ at the wheel-terrain contacts to attain the mobility that it possesses on these special surfaces. The kinematic effects of varying the vehicle and/or terrain geometric parameters from their nominal values are discussed. The design enhancements that are required in existing off-road vehicles to avoid kinematic slipping are presented for a class of vehicles that include two-wheel axles in their designs.

Author(s):  
S. V. Sreenivasan ◽  
P. Nanua

Abstract This paper addresses instantaneous motion characteristics of wheeled vehicles systems on even and uneven terrain. A thorough kinematic geometric approach which utilizes screw system theory is used to investigate vehicle-terrain combinations as spatial mechanisms that possess multiple closed kinematic chains. It is shown that if the vehicle-terrain combination satisfies certain geometric conditions, for instance when the vehicle operates on even terrain, the system becomes singular or non-Kutzbachian — it possesses finite range mobility that is different from the one obtained using Kutzbach criterion. An application of this geometric approach to the study of rate kinematics of various classes of wheeled vehicles is also included. This approach provides an integrated framework to study the kinematic effects of varying the vehicle and/or terrain geometric parameters from their nominal values. In addition, design enhancements of existing vehicles are suggested using this approach. This kinematic study is closely related to the force distribution characteristics of wheeled vehicles which is the subject of the companion paper [SN96].


Author(s):  
Aliakbar Alamdari ◽  
Xiaobo Zhou ◽  
Venkat N. Krovi

The Articulated Wheeled Vehicle (AWV) paradigm examines a class of wheeled vehicles where the chassis is connected via articulated chains to a set of ground-contact wheels. Actively- or passively-controlled articulations can help alter wheel placement with respect to chassis during locomotion, endowing the vehicle with significant reconfigurability and redundancy. The ensuing ‘leg-wheeled’ systems exploit these capabilities to realize significant advantages (improved stability, obstacle surmounting capability, enhanced robustness) over both traditional wheeled- and/or legged-systems in a range of uneven-terrain locomotion applications. In our previous work, we exploited the reconfiguration capabilities of a planar AWR to achieve internal shape regulation, secondary to a trajectory-following task. In this work, we extend these capabilities to the full 3D case — in order to utilize the full potential of kinematic- and actuation-redundancy to enhance rough-terrain locomotion.


1996 ◽  
Vol 118 (2) ◽  
pp. 312-317 ◽  
Author(s):  
S. V. Sreenivasan ◽  
K. J. Waldron

This manuscript presents a displacement analysis of actively articulated wheeled vehicles on uneven terrain. These vehicles are distinct from traditional wheeled systems since they have the ability to actively adapt to variations in the terrain and they can actively influence the forces at the wheel-terrain contact locations. They also possess special mobility capabilities such as obstacle climbing and self-recovery from an over-turn failure. The problem of solving for the configuration of these vehicles on uneven terrain has been addressed in detail. The displacement analysis leads to multiple solutions due to the inherent nonlinearity in the position kinematic equations. Geometric reasoning has been used to identify the particular configuration that represents the “correct” vehicle geometry on the terrain. Applications of the displacement analysis algorithms to vehicle planning on uneven terrain have been discussed. An obstacle climbing maneuver of a three-module actively articulated wheeled vehicle has been described.


1998 ◽  
Vol 123 (2) ◽  
pp. 169-175 ◽  
Author(s):  
B. J. Choi ◽  
S. V. Sreenivasan

This paper presents a geometric approach for solving the force distribution problem in active wheeled vehicles (AWVs) moving on uneven surfaces. Here an active vehicle is defined as a system that includes independent actuators for all its internal joints. In general, AWVs do not possess omni-directional mobility, and they possess fewer actuators than the number of wheel-ground contact force components. This article presents an approach for separating the contact force vectors into active and passive components such that there exists an invertible square matrix that maps the active contact forces to the actuator efforts. An appropriate force allocation algorithm can then be developed for these systems. The concepts introduced in this article are demonstrated via an example of AWVs on uneven terrain. An example of force distribution in active legged vehicles (ALVs) that possess the same number of actuators as contact forces is also provided for comparison.


Author(s):  
S. V. Sreenivasan ◽  
P. Nanua

Abstract This paper addresses the force distribution issues associated with redundantly actuated wheeled vehicles that are suited for operation on uneven terrain. Basic results relating to the partitioning of motion and force variables in these mechanisms are developed. The redundant actuation scheme allows for the control of force distribution in the system, in addition to motion control. The unique kinematic characteristics of wheeled systems, that makes these vehicles ‘singular’ on even terrain, and ‘near-singular’ on uneven terrain; and the presence of ‘kinematic slipping’ when these vehicles move on uneven terrain make their force distribution mathematics distinct from other systems considered in the literature. In a singular configuration, it is shown here that these active wheeled vehicles possess only a partial control over their internal force distribution. A procedure to partition the ‘force space’ into controllable and uncontrollable spaces is provided based on a geometric approach. Closed-form force space results are included for an actively articulated multi-module system (a generalization of a passive, articulated mobile robot that has been studied extensively in literature). The force distribution in actively reconfigurable wheeled vehicles is closely related to their rate kinematics. Rate kinematics of these vehicles has been studied in a companion paper [SN96].


2020 ◽  
Vol 8 (1) ◽  
pp. 68-91
Author(s):  
Gianmarco Giovannardi

AbstractThe deformability condition for submanifolds of fixed degree immersed in a graded manifold can be expressed as a system of first order PDEs. In the particular but important case of ruled submanifolds, we introduce a natural choice of coordinates, which allows to deeply simplify the formal expression of the system, and to reduce it to a system of ODEs along a characteristic direction. We introduce a notion of higher dimensional holonomy map in analogy with the one-dimensional case [29], and we provide a characterization for singularities as well as a deformability criterion.


1991 ◽  
Vol 15 (2) ◽  
pp. 123-138
Author(s):  
Joachim Biskup ◽  
Bernhard Convent

In this paper the relationship between dependency theory and first-order logic is explored in order to show how relational chase procedures (i.e., algorithms to decide inference problems for dependencies) can be interpreted as clever implementations of well known refutation procedures of first-order logic with resolution and paramodulation. On the one hand this alternative interpretation provides a deeper insight into the theoretical foundations of chase procedures, whereas on the other hand it makes available an already well established theory with a great amount of known results and techniques to be used for further investigations of the inference problem for dependencies. Our presentation is a detailed and careful elaboration of an idea formerly outlined by Grant and Jacobs which up to now seems to be disregarded by the database community although it definitely deserves more attention.


1993 ◽  
Vol 71 (5-6) ◽  
pp. 227-236 ◽  
Author(s):  
M. E. Carrington

There has been much recent interest in the finite-temperature effective potential of the standard model in the context of the electroweak phase transition. We review the calculation of the effective potential with particular emphasis on the validity of the expansions that are used. The presence of a term that is cubic in the Higgs condensate in the one-loop effective potential appears to indicate a first-order electroweak phase transition. However, in the high-temperature regime, the infrared singularities inherent in massless models produce cubic terms that are of the same order in the coupling. In this paper, we discuss the inclusion of an infinite set of these terms via the ring-diagram summation, and show that the standard model has a first-order phase transition in the weak coupling expansion.


2020 ◽  
pp. 16-22
Author(s):  
D.A. Dubovik

A method for quantitative assessment of the effectiveness of the running system of wheeled vehicles for the general case of curvilinear motion is proposed. An expression is obtained for calculating the coefficient of efficiency of the running system of a wheeled vehicle, taking into account the parameters of the power and steering wheel drives. The results of evaluating the effectiveness of the running system of an off-road vehicle with a wheel arrangement of 8Ѕ8 and two front steerable axles are presented. Keywords: wheeled vehicle, running system, power drive, drive wheels, steering control, effectiveness, coefficient of efficiency. [email protected]


1968 ◽  
Vol 5 (03) ◽  
pp. 648-668
Author(s):  
D. G. Lampard

In this paper we discuss a counter system whose output is a stochastic point process such that the time intervals between pairs of successive events form a first order Markov chain. Such processes may be regarded as next, in order of complexity, in a hierarchy of stochastic point processes, to “renewal” processes, which latter have been studied extensively. The main virtue of the particular system which is studied here is that virtually all its important statistical properties can be obtained in closed form and that it is physically realizable as an electronic device. As such it forms the basis for a laboratory generator whose output may be used for experimental work involving processes of this kind. Such statistical properties as the one and two-dimensional probability densities for the time intervals are considered in both the stationary and nonstationary state and also discussed are corresponding properties of the successive numbers arising in the stores of the counter system. In particular it is shown that the degree of coupling between successive time intervals may be adjusted in practice without altering the one dimensional probability density for the interval lengths. It is pointed out that operation of the counter system may also be regarded as a problem in queueing theory involving one server alternately serving two queues. A generalization of the counter system, whose inputs are normally a pair of statistically independent Poisson processes, to the case where one of the inputs is a renewal process is considered and leads to some interesting functional equations.


Sign in / Sign up

Export Citation Format

Share Document