Use of dFRFs for Identification of Travelling Wave Modes in Rotating Disks

1998 ◽  
Vol 120 (3) ◽  
pp. 719-726 ◽  
Author(s):  
Myeong-Eop Kim ◽  
Chong-Won Lee

Use of the wave directional frequency response function (dFRF), which is composed of conventional frequency response functions, is proposed for identification of the forward and backward travelling wave modes of isotropic rotating disks. The driving point dFRF, which is a weighted sum of complex wave dFRFs defined in the complex wave coordinates, is also derived for separation of the forward and backward travelling wave modes in the frequency domain. Numerical examples of rotating disks are treated to demonstrate the analytical developments. Experiments with a laboratory rotating disk are also performed to verify the theoretical findings.

Author(s):  
Chong-Won Lee ◽  
Kye-Si Kwon

Abstract A quick and easy but comprehensive identification method for asymmetry in an asymmetric rotor is proposed based on complex modal testing method. In this work, it is shown that the reverse directional frequency response function (reverse dFRF), which indicates the degree of asymmetry, can be identified with a simple method requiring only one vibration sensor and one exciter. To clarify physical realization associated with estimation of the reverse dFRF, its relation to the conventional frequency response functions, which are defined by the real input (exciter) and output (vibration sensor), are extensively discussed.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jialiang Zhang

For fault diagnosis of nonlinear analog circuit, a novel method based on generalized frequency response function (GFRF) and least square support vector machine (LSSVM) classifier fusion is presented. The sinusoidal signal is used as the input of analog circuit, and then, the generalized frequency response functions are estimated directly by the time-domain formulations. The discrete Fourier transform of measurement data is avoided. After obtaining the generalized frequency response functions, the amplitudes of the GFRFs are chosen as the fault feature parameters. A classifier fusion algorithm based on least square support vector machine (LSSVM) is used for fault identification. Two LSSVM multifault classifiers with different kernel functions are constructed as subclassifiers. Fault diagnosis experiments of resistor-capacitance (RC) circuit and Sallen Key filter are carried out, respectively. The results show that the estimated GFRFs of the circuit are accurate, and the fault diagnosis method can get high recognition rate.


2018 ◽  
Vol 22 (4) ◽  
pp. 935-947 ◽  
Author(s):  
Qianhui Pu ◽  
Yu Hong ◽  
Liangjun Chen ◽  
Shili Yang ◽  
Xikun Xu

This article evaluates the use of experimental frequency response functions for damage detection and quantification of a concrete beam with the help of model updating theory. The approach is formulated as an optimization problem that intends to adjust the analytical frequency response functions from a benchmark finite element model to match with the experimental frequency response functions from the damaged structure. Neither model expansion nor reduction is needed because the individual analytical frequency response function formulation is derived. Unlike the commonly used approaches that assume zero damping or viscous damping for simplicity, a more realistic hysteretic damping model is considered in the analytical frequency response function formulation. The accuracy and anti-noise ability of the proposed approach are first verified by the numerical simulations. Next, a laboratory reinforced concrete beam with different levels of damage is utilized to investigate the applicability in an actual test. The results show successful damage quantification and damping updating of the beam by matching the analytical frequency response functions with the experimental frequency response functions in each damage scenario.


1993 ◽  
Vol 20 (5) ◽  
pp. 801-813 ◽  
Author(s):  
Yin Chen ◽  
A. S. J. Swamidas

Strain gauges, along with an accelerometer and a linear variable displacement transducer, were used in the modal testing to detect a crack in a tripod tower platform structure model. The experimental results showed that the frequency response function of the strain gauge located near the crack had the most sensitivity to cracking. It was observed that the amplitude of the strain frequency response function at resonant points had large changes (around 60% when the crack became a through-thickness crack) when the crack grew in size. By monitoring the change of modal parameters, especially the amplitude of the strain frequency response function near the critical area, it would be very easy to detect the damage that occurs in offshore structures. A numerical computation of the frequency response functions using finite element method was also performed and compared with the experimental results. A good consistency between these two sets of results has been found. All the calculations required for the experimental modal parameters and the finite element analysis were carried out using the computer program SDRC-IDEAS. Key words: modal testing, cracking, strain–displacement–acceleration frequency response functions, frequency–damping–amplitude changes.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Tai-Hong Cheng ◽  
Zhen-Zhe Li ◽  
Yun-De Shen

This paper has applied the constrained viscoelastic layer damping treatments to a cylindrical aluminum shell using layerwise displacement theory. The transverse shear, the normal strains, and the curved geometry are exactly taken into account in the present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The damped natural frequencies, modal loss factors, and frequency response functions of cylindrical viscoelastic aluminum shells are compared with those of the base thick aluminum panel without a viscoelastic layer. The thickness and damping ratio of the viscoelastic damping layer, the curvature of proposed cylindrical aluminum structure, and placement of damping layer of the aluminum panel were investigated using frequency response function. The presented results show that the sandwiched viscoelastic damping layer can effectively suppress vibration of cylindrical aluminum structure.


2017 ◽  
Vol 23 (11) ◽  
pp. 1444-1455
Author(s):  
Walter D’Ambrogio ◽  
Annalisa Fregolent

Flexible structural components can be attached to the rest of the structure using different types of joints. For instance, this is the case of solar panels or array antennas for space applications that are joined to the body of the satellite. To predict the dynamic behaviour of such structures under different boundary conditions, such as additional constraints or appended structures, it is possible to start from the frequency response functions in free-free conditions. In this situation, any structure exhibits rigid body modes at zero frequency. To experimentally simulate free-free boundary conditions, flexible supports such as soft springs are typically used: with such arrangement, rigid body modes occur at low non-zero frequencies. Since a flexible structure exhibits the first flexible modes at very low frequencies, rigid body modes and flexible modes become coupled: therefore, experimental frequency response function measurements provide incorrect information about the low frequency dynamics of the free-free structure. To overcome this problem, substructure decoupling can be used, that allows us to identify the dynamics of a substructure (i.e. the free-free structure) after measuring the frequency response functions on the complete structure (i.e. the structure plus the supports) and from a dynamic model of the residual substructure (i.e. the supporting structure). Subsequently, the effect of additional boundary conditions can be predicted using a frequency response function condensation technique. The procedure is tested on a reduced scale model of a space solar panel.


2018 ◽  
Vol 18 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Ulrike Dackermann ◽  
Wade A Smith ◽  
Mehrisadat Makki Alamdari ◽  
Jianchun Li ◽  
Robert B Randall

This article aims at developing a new framework to identify and assess progressive structural damage. The method relies solely on output measurements to establish the frequency response functions of a structure using cepstrum-based operational modal analysis. Two different damage indicative features are constructed using the established frequency response functions. The first damage feature takes the residual frequency response function, defined as the difference in frequency response function between evolving states of the structure, and then reduces its dimension using principle component analysis; while in the second damage indicator, a new feature based on the area under the residual frequency response function curve is proposed. The rationale behind this feature lies in the fact that damage often affects a number of modes of the system, that is, it affects the frequency response function over a wide range of frequencies; as a result, this quantity has higher sensitivity to any structural change by combining all contributions from different frequencies. The obtained feature vectors serve as inputs to a novel multi-stage neural network ensemble designed to assess the severity of damage in the structure. The proposed method is validated using extensive experimental data from a laboratory four-girder timber bridge structure subjected to gradually progressing damage at various locations with different severities. In total, 13 different states of the structure are considered, and it is demonstrated that the new damage feature outperforms the conventional principle component analysis–based feature. The contribution of the work is threefold: first, the application of cepstrum-based operational modal analysis in structural health monitoring is further validated, which has potential for real-life applications where only limited knowledge of the input is available; second, a new damage feature is proposed and its superior performance is demonstrated; and finally, the comprehensive test framework including extensive progressive damage cases validates the proposed technique.


1996 ◽  
Vol 118 (1) ◽  
pp. 95-99 ◽  
Author(s):  
J. Ling ◽  
Y. Cao

This paper introduces frequency response functions, analyzes the relationships between the frequency response functions and influence coefficients theoretically, and derives corresponding mathematical equations for high-speed rotor balancing. The relationships between the imbalance masses on the rotor and frequency response functions are also analyzed based upon the modal balancing method, and the equations related to the static and dynamic imbalance masses and the frequency response function are obtained. Experiments on a high-speed rotor balancing rig were performed to verify the theory, and the experimental data agree satisfactorily with the analytical solutions. The improvement on the traditional balancing method proposed in this paper will substantially reduce the number of rotor startups required during the balancing process of rotating machinery.


2001 ◽  
Vol 86 (6) ◽  
pp. 2703-2714 ◽  
Author(s):  
Joseph F. Kabara ◽  
A. B. Bonds

Responses of cat striate cortical cells to a drifting sinusoidal grating were modified by the superimposition of a second, perturbing grating (PG) that did not excite the cell when presented alone. One consequence of the presence of a PG was a shift in the tuning curves. The orientation tuning of all 41 cells exposed to a PG and the spatial frequency tuning of 83% of the 23 cells exposed to a PG showed statistically significant dislocations of both the response function peak and center of mass from their single grating values. As found in earlier reports, the presence of PGs suppressed responsiveness. However, reductions measured at the single grating optimum orientation or spatial frequency were on average 1.3 times greater than the suppression found at the peak of the response function modified by the presence of the PG. Much of the loss in response seen at the single grating optimum is thus a result of a shift in the tuning function rather than outright suppression. On average orientation shifts were repulsive and proportional (∼0.10 deg/deg) to the angle between the perturbing stimulus and the optimum single grating orientation. Shifts in the spatial frequency response function were both attractive and repulsive, resulting in an overall average of zero. For both simple and complex cells, PGs generally broadened orientation response function bandwidths. Similarly, complex cell spatial frequency response function bandwidths broadened. Simple cell spatial frequency response functions usually did not change, and those that did broadened only 4% on average. These data support the hypothesis that additional sinusoidal components in compound stimuli retune cells' response functions for orientation and spatial frequency.


2022 ◽  
Vol 105 (1) ◽  
pp. 003685042110644
Author(s):  
Ayisha Nayyar ◽  
Ummul Baneen ◽  
Muhammad Ahsan ◽  
Syed A Zilqurnain Naqvi ◽  
Asif Israr

Low-severity multiple damage detection relies on sensing minute deviations in the vibrational or dynamical characteristics of the structure. The problem becomes complicated when the reference vibrational profile of the healthy structure and corresponding input excitation, is unavailable as frequently experienced in real-life scenarios. Detection methods that require neither undamaged vibrational profile (baseline-free) nor excitation information (output-only) constitute state-of-art in structural health monitoring. Unfortunately, their efficacy is ultimately limited by non-ideal input excitation masking crucial attributes of system response such as resonant frequency peaks beyond first (few) natural frequency(ies) which can better resolve the issue of multiple damage detection. This study presents an improved frequency response function curvature method which is both baseline-free and output-only. It employs the cepstrum technique to eliminate [Formula: see text] decay of higher resonance peaks caused by the temporal spread of real impulse excitation. Long-pass liftering screens out the bulk of low-frequency sensor noise along with the excitation. With more visible resonant peaks, the cepstrum purified frequency response functions (regenerated frequency response functions) register finer deviation from an estimated baseline frequency response function and yield an accurate damage index profile. The simulation and experimental results on the beam show that the proposed method can successfully locate multiple damages of severity as low as 5%.


Sign in / Sign up

Export Citation Format

Share Document