Estimation of Dynamic Fuel Parameters in Automotive Engines

1994 ◽  
Vol 116 (4) ◽  
pp. 774-780 ◽  
Author(s):  
J. J. Moskwa

Many automotive engine models exist for the development of control algorithms. These models should include the important lags and delays which can affect the response of the overall controlled system. One of the most important, and most difficult parts of the engine to estimate is the fuel delivery model, from when the demand for fuel is calculated to intake valve closing. This paper describes procedures for estimating the parameters of a fuel delivery model, and provides experimental results using these techniques.

1992 ◽  
Vol 114 (2) ◽  
pp. 278-285 ◽  
Author(s):  
J. J. Moskwa ◽  
J. K. Hedrick

There is considerable interest in coordinated automotive engine/transmission control to smooth shifts, and for traction control of front wheel vehicles. This paper outlines a nonlinear dynamic engine model of a port fuel-injected engine, which can be used for control algorithm development. This engine model predicts the mean engine brake torque as a function of the engine controls (i.e., throttle angle, spark advance, fuel flow rate, and exhaust gas recirculation (E. G. R.) flow rate). The model has been experimentally validated for a specific engine, and includes: • intake manifold dynamics, • fuel delivery dynamics, and • process delays inherent in the four-stroke engine. This model is used in real time within a control algorithm, and for system simulation. Also, it is flexible enough to represent a family of spark ignition automotive engines, given some test and/or simulation data for setting parameters.


Author(s):  
Simone Formentin ◽  
Giovanni Alli ◽  
Sergio M. Savaresi ◽  
Francesco Castelli Dezza

EPACs (Electric Pedal Assisted Cycles) represent a very efficient and fashionable mean of non-polluting transport. They are useful for bringing education, for health service and they guarantee the lowest energy cost per distance traveled. In this paper, a power kit has been designed and implemented on a real electric bicycle. In particular, hardware architectures and control algorithms are developed together, taking in account shared needs. An optimal choice of the components and an innovative overboost strategy characterize the provided system. Experimental results and comparison with a benchmark product available in the market demonstrate the efficiency of the whole system.


2015 ◽  
Vol 730 ◽  
pp. 283-286
Author(s):  
Rong Fu Zhu ◽  
Yun Long Wang ◽  
Hui Wang ◽  
Yuan Tao Sun

The performance of engine fueled with diesel/biodiesel blends was tested. It was indicated from the experimental results that the brake power, torque out and brake specific fuel consumption of engine fueled with diesel/biodiesel caused slight variations, while NOx emission increased significantly compared with engine fueled with diesel. In order to reduce NOx emission of engine fueled with pure biodiesel, retarding fuel delivery advance angle was used, and the NOx emission tests revealed that the NOx emission decreased significantly at different engine speeds.


2021 ◽  
Vol 313 ◽  
pp. 08001
Author(s):  
Asary Abdul Rab ◽  
Catapano Francesco ◽  
Vaglieco Bianca Maria

The exhaust of an automotive engine is one of the main causes of air pollution. These days, many researchers are investigating the waste heat recovery of automotive engines. A two-cylinder gamma-type Stirling engine is chosen for this purpose. The exhaust of a diesel engine is chosen as a heat input source for this purpose. This work explains the isothermal, ideal adiabatic, and non-ideal simple analysis of the Stirling engine. A set of differential equations are solved using Runge-Kutta 4th order method using MATLAB software. These equations describe the pressure, pressure variation, mass, mass flow, and energy flow in the Stirling engine which estimate the power and efficiency. Using non-ideal simple analysis, pressure drop analysis, piston finite speed, heat transfer losses of Stirling engine are calculated. The power estimated by isothermal, adiabatic, simple, and experimental analysis is 133.82 W, 143.75 W, 93.2 W, 111.43 W, and thermal efficiency is 30.70 %, 30.90%, 21.20%, 24.70% respectively. The results of these models are in close agreement with the experimental results.


2019 ◽  
Author(s):  
Vivek Raja Raj Mohan ◽  
Edward Nelson ◽  
Jannik Reitz ◽  
Jennifer Kensler ◽  
Varun Gauba ◽  
...  

Author(s):  
Jeremy J. Worm ◽  
Jim McFarland ◽  
Forrest Jehlik ◽  
Paul W. Dice ◽  
Scott A. Miers

Spark plugs utilizing a J-wire electrode are standard in most automotive engines and have been for decades. However, innumerable alternative spark plug designs have been introduced. This paper examines the potential benefit of one particular alternative electrode geometry in a high-performance automotive engine. The alternative spark plug that is investigated is a commercially available aftermarket unit. The testing included detailed analysis of both brake and indicated parameters including MEP and burn rates. Testing was conducted under both steady state and transient conditions, and encompassed multiple induction systems and test fuels including E85. The test engine was a commercially available high performance aftermarket engine assembly intended for motorsports. This paper includes the optimal settings for ignition timing and lambda and the process by which those values were determined. The combustion analysis shows the alternative spark plug electrode resulted in an increased early burn rate, which in turn lead to an overall advancing of the combustion phasing. To better decouple combustion phasing effects from test to test variation on brake output parameters, an empirical model is developed and exercised. The model describes the expected change in brake output resulting from the shift in combustion phasing induced by the alternative spark plug geometry.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
David Foley ◽  
Jean-Sebastien Plante

Jet-boats perform remarkably well at high-speed but lack low speed maneuverability for tight maneuvers such as docking. This paper presents a joystick controlled omnidirectional propulsion system for jet-boats. The concept uses a set of fixed jet nozzles disposed around the hull. When a force is commanded by the joystick, valves on each nozzle modulate the flow so that the sum of nozzle thrusts correspond to the commanded force. The positions and angles of the nozzles are optimized with an index of omnidirectionality quality based on the projection of a set of force solutions on a shell with the shape of a desired force space. The choice of valve positions and engine speeds is done by the numerical inversion of an internal viscous flow model. A 3D simulator, backed by experimental results, serves to (1) evaluate the ability of the proposed concept in meeting its design requirements and (2) develop control algorithms. Experimental results show that the proposed omnidirectional system is effective for low speed maneuverability with open-loop force control. The present work also offers an effective omnidirectional propulsion system that is easy to enhance with advanced control laws. Velocity feedback control is given as an example and shows important improvement of maneuverability and robustness to miscalibration.


2011 ◽  
Vol 2011 ◽  
pp. 1-17 ◽  
Author(s):  
Debao Zhou ◽  
Gary McMurray

Cutting operations using blades can arise in a number of industries, for example, food processing industry, in which cheese, fruit and vegetable, even meat, are involved. Certain questions will rise during these works, such as “why pressing-and-slicing cuts use less force than pressing-only cuts” and “how is the influence of the blade cutting-edge on force”. To answer these questions, this research developed a mathematical expression of the cutting stress tensor. Based on the analysis of the stress tensor on the contact surface, the influence of the blade edge-shape and slicing angle on the resultant cutting force were formulated and discussed. These formulations were further verified using experimental results by robotic cutting of potatoes. Through studying the change of the cutting force, the optimal slicing angle can be obtained in terms of maximum feeding distance and minimum cutting force. Based on the blade sharpness properties and the specific materials, the required cutting force can be predicted. These formulation and experimental results explained the basic theory of blade cutting fracture and further provided the support to optimize the cutting mechanism design and to develop the force control algorithms for the automation of blade cutting operations.


Sign in / Sign up

Export Citation Format

Share Document