Housing Influence on Churning Losses in Geared Transmissions

2008 ◽  
Vol 130 (6) ◽  
Author(s):  
C. Changenet ◽  
P. Velex

In a previous paper (Changenet, and Velex, 2007, “A Model for the Prediction of Churning Losses in Geared Transmissions—Preliminary Results,” ASME J. Mech. Des., 129(1), pp. 128–133), a series of empirical formulas were presented enabling accurate predictions of churning losses for one gear, which is typical of automotive transmission geometry. However, this formulation does not take into account the influence of flanges and deflectors. In order to extend the proposed methodology, a test rig has been set up in which several movable walls can be inserted, thus making it possible to modify the radial and axial clearances, i.e., the distances between the tested gear and the walls. Based on a qualitative evaluation of the various fluid flow regimes possible in gearboxes, the influence of the global volume of the oil sump on churning losses is analyzed. By considering a number of flange and deflector arrangements, the following conclusions are drawn: (a) Radial clearances have a weaker influence than axial clearances and (b) power losses can be minimized by properly chosen axial clearances.

Author(s):  
C. Changenet ◽  
P. Velex

In a previous paper, a series of analytical formulas were presented enabling accurate predictions of churning losses for one gear which is typical of automotive transmission geometry. However, this formulation does not take into account the influence of flanges and deflectors. In order to extend the proposed methodology, a test rig has been set up in which several moveable walls can be inserted thus making it possible to modify the radial and axial clearances, i.e., the distances between the tested gear and the walls. Based on a qualitative evaluation of the various fluid flow regimes possible in gearboxes, the influence of the global volume of the oil sump on churning losses is analyzed. By considering a number of flange and deflector arrangements, the following conclusions are drawn: a) radial clearances have a weaker influence than axial clearances and, b) power losses can be minimized by properly chosen axial clearances.


2006 ◽  
Vol 129 (1) ◽  
pp. 128-133 ◽  
Author(s):  
C. Changenet ◽  
P. Velex

A series of formulas are presented which enable accurate predictions of churning losses for one pinion characteristic of automotive transmission geometry. The results are based on dimensional analysis and have been experimentally validated over a wide range of speeds, gear geometries, lubricants, and immersion depths. The case of a pinion-gear pair in mesh has been considered, and it has been proved that, depending on the sense of rotation, the superposition of the individual losses of the pinion and of the gear leads to erroneous figures. A new formula devoted to a pinion and gear rotating anticlockwise has been derived and validated by comparison with experimental evidence.


2018 ◽  
Author(s):  
Pawan Kumar Yadav ◽  
Songgang Qiu ◽  
Koji Yanaga

To study the fluid flow and heat transfer in a Stirling Engine Heater Head (HH), two benchtop test rigs were designed and manufactured. One is to evaluate flow loss in oscillating flow conditions and another is to evaluate heat transfer in unidirectional flow conditions. The main test section-heater head, is additively manufactured; the test section also consists of an additively manufactured regenerator and a heat rejecter. For fluid flow test rig, a linear actuator from Parker generates and maintains the oscillating flow by driving a piston in sinusoidal motion. The piston is sealed against the charged fluid using Trelleborg seals. At room temperature, by varying the charge pressure, frequency, and stroke length, multiple test conditions can be achieved. For heat transfer test rig, a Gast’s high-flow, low-pressure compressed air blower is used to deliver the flow. The data acquisition (DAQ) is comprised of National Instruments’ cDAQ and modules to measure the piston’s motion in real time, pressure with Kistler’s pressure transducers, and the temperatures with OMEGA’s thermocouples, located at both the inlet and outlet of the heater head. Presented also are the testing procedures, some expected results, and the Sage outputs that will be used to check against the measured data from the test rigs, including some preliminary results. Based on the preliminary results, pressure and position curves were sinusoidal, which is expected of oscillating motions, meaning the test rig is operating well.


2017 ◽  
Vol 96 (3) ◽  
Author(s):  
Fabian B. Wadsworth ◽  
Jérémie Vasseur ◽  
Edward W. Llewellin ◽  
Katherine J. Dobson ◽  
Mathieu Colombier ◽  
...  

Author(s):  
Stefan Schmid ◽  
Rudi Kulenovic ◽  
Eckart Laurien

For the validation of empirical models to calculate leakage flow rates in through-wall cracks of piping, reliable experimental data are essential. In this context, the Leakage Flow (LF) test rig was built up at the IKE for measurements of leakage flow rates with reduced pressure (maximum 1 MPA) and temperature (maximum 170 °C) compared to real plant conditions. The design of the test rig enables experimental investigations of through-wall cracks with different geometries and orientations by means of circular blank sheets with integrated cracks which are installed in the tubular test section of the test rig. In the paper, the experimental LF set-up and used measurement techniques are explained in detail. Furthermore, first leakage flow measurement results for one through-wall crack geometry and different imposed fluid pressures at ambient temperature conditions are presented and discussed. As an additional aspect the experimental data are used for the determination of the flow resistance of the investigated leak channel. Finally, the experimental results are compared with numerical results of WinLeck calculations to prove specifically in WinLeck implemented numerical models.


Author(s):  
J. F. Dijksman ◽  
U. Stachewicz

On-demand electrohydrodynamic jetting also called electrohydrodynamic atomization (EHDA) is a method to jet small amounts of fluid out of a nozzle with a relatively large diameter by switching on and off an electrical field between the nozzle and the substrate. The total amount of volume deposited is up to 5 pL. The set-up consists of a vertically placed glass pipette with a small nozzle directed downward and a flat substrate placed close to the end of the nozzle. Inside the pipette, an electrode is mounted close to the entrance of the nozzle. The electrode is connected to a high voltage power amplifier. Upon switching on the electrical field, the apparent surface tension drops, the meniscus deforms into a cone and fluid starts to flow toward the nozzle deforming the meniscus. At a certain moment the cone reaches the Taylor cone dimensions and from its tip a jet emerges that decomposes into a stream of charged fL droplets that fly toward the substrate. This process stops when the pulse is switched off. After switching off, the meniscus returns slowly to its equilibrium position. The process is controlled by different time constants, such as the slew rate of the power amplifier and the RC time of the electrical circuit composed of the electrical resistance in the fluid contained in the nozzle between the electrode and the meniscus, and the capacitance of the gap between the meniscus and the flat substrate. Another time constant deals with the fluid flow during the growth of the meniscus, directly after switching on the pulse. This fluid flow is driven by hydrostatic pressure and opposed by a viscous drag in the nozzle. The final fluid flow during droplet formation is governed by the balance between the drag of the charge carriers inside the fluid, caused by the current associated with the charged droplets leaving the meniscus and the viscous drag. These different phenomena will be discussed theoretically and compared to experimental results.


2021 ◽  
pp. 1-29
Author(s):  
Ahmet Dindar ◽  
Amit Chimanpure ◽  
Ahmet Kahraman

Abstract A tribo-dynamic model of ball bearings is proposed to predict their load-dependent (mechanical) power losses. The model combines (i) a transient, point contact mixed elastohydrodynamic lubrication (EHL) formulation to simulate the mechanics of the load carrying lubricated ball-race interfaces, and (ii) a singularity-free dynamics model, and establishes the two-way coupling between them that dictates power losses. The dynamic model employs a vectoral formulation with Euler parameters. The EHL model is capable of capturing two-dimensional contact kinematics, velocity variations across the contact as well as asperity interactions of rough contact surfaces. Resultant contact surface shear distributions are processed to predict mechanical power losses of example ball bearings operating under combined radial and axial forces. An experimental set-up is introduced for measurement of the power losses of rolling-element bearings. Sets of measurements taken by using the same example ball bearings are compared to those predicted by the model to assess its accuracy in predicting mechanical power loss of a ball bearing within wide ranges of axial and radial forces.


2006 ◽  
Vol 128 (4) ◽  
pp. 745-752 ◽  
Author(s):  
C. J. Hooke ◽  
K. Y. Li

Using modern EHL programs it is relatively simple to determine the pressures and clearances in rough EHL contacts. The pressures may then be used to calculate the subsurface stresses in the two contacting components. However, the results depend on the assumptions made about the fluid’s rheology. While it is possible to measure the clearances using interferometric techniques, measurement of either the pressures or stresses is extremely difficult. However it is these, rather than the clearances, that determine the life of the contact. In previous papers the authors have described how the inverse method may be used to validate the stress predictions for contacts with transverse roughness. This type of contact has fluid flow in only one plane and it remained necessary to check the results for more general rough surfaces where the flow is three-dimensional. Accordingly, the inverse method is extended, in this paper, to a situation where out-of-plane flow is significant. The paper describes the approach and presents some preliminary results for rolling contacts.


1909 ◽  
Vol 6 (4) ◽  
pp. 145-148 ◽  
Author(s):  
E. H. L. Schwarz

Dr. J. R. Sutton has recently read a most important paper to the Royal Society of South Africa on the diurnal variation of level at Kimberley. The paper gave the preliminary results of observations made during the course of three years upon the variation of the level of the ground as recorded by a large horizontal pendulum of a special design made for the author by the Cambridge Instrument Company. It appeared from the results that the movements in the surface of the ground, which set up corresponding movements in the pendulum, were very great. The maximum westerly elongation of the extremity of the pendulum occurred about 5.30 a.m., the maximum easterly about 4.15 p.m., the medium positions a little before 11 a.m. and 9.30 p.m. Geometrically these movements may be represented on the hypothesis that the hemisphere facing the sun bulges out, forming a sort of meniscus to the geosphere. The rise and fall of the surface of the ground which such a supposition would postulate is enormous, and the very magnitude has led Dr. Sutton to hesitate in giving the figures. There can, however, be very little doubt that some rise and fall in the earth's surface is occasioned by the sun's gravitational pull, although the present figures may have to be lessened by taking into consideration other causes which contribute to the disturbance of the pendulum.


Sign in / Sign up

Export Citation Format

Share Document