Nonideal Gas Effects for the Venturi Meter

1991 ◽  
Vol 113 (2) ◽  
pp. 301-304 ◽  
Author(s):  
W. Bober ◽  
W. L. Chow

A method for treating nonideal gas flows through a venturi meter is described. The method is an extension of a previous study reported in an earlier paper. The method involves the determination of the expansion factor which may then be used to determine the mass flow rate through the venturi meter. The method also provides the means for determining the critical pressure ratio as well as the maximum flow rate per unit throat area. The Redlich-Kwong equation of state is used, which allows for closed form expressions for the specific heat at constant volume and the change in entropy. The Newton-Raphson method is used to determine the temperature and specific volume at the throat. It is assumed that the following items are known: the upstream temperature and pressure and the ratio of the throat pressure to the upstream pressure. Results were obtained for methane gas. These results indicate that for the cases considered, the use of the ideal gas expression for the expansion factor would lead to an error in the determination of the mass flow rate; the error increases as the throat to inlet pressure ratio decreases. For the example reported in this study, the maximum percent difference in the critical pressure ratio between the ideal and nonideal gases was 5.81 percent, while the maximum percent difference in the maximum flow rate per unit throat area was 7.62 percent.

2017 ◽  
Vol 9 (2) ◽  
pp. 168781401668726 ◽  
Author(s):  
Fan Yang ◽  
Gangyan Li ◽  
Dawei Hu ◽  
Toshiharu Kagawa

In this study, we proposed a method for calculating the sonic conductance of a short-tube orifice. First, we derived a formula for calculating the sonic conductance based on a continuity equation, a momentum equation and the definition of flow-rate characteristics. The flow-rate characteristics of different orifices were then measured using the upstream constant-pressure test method in ISO 6358. Based on these test data, the theoretical formula was simplified using the least squares fitting method, the accuracy of which was verified experimentally. Finally, the effects of the diameter ratio, the length-to-diameter ratio and the critical pressure ratio were analysed with reference to engineering applications, and a simplified formula was derived. We conclude that the influence of the diameter ratio is greater than that of the length-to-diameter ratio. When the length-to-diameter ratio is <5, its effect can be neglected. The critical pressure ratio has little effect on the sonic conductance of a short-tube orifice, and it can be set to 0.5 when calculating the sonic conductance in engineering applications. The formula proposed in this study is highly accurate with a mean error of <3%.


Author(s):  
Mohammad J. Izadi ◽  
Alireza Falahat

In this investigation an attempt is made to find the best hub to tip ratio, the maximum number of blades, and the best angle of attack of an axial fan with flat blades at a fixed rotational speed for a maximum mass flow rate in a steady and turbulent conditions. In this study the blade angles are varied from 30 to 70 degrees, the hub to tip ratio is varied from 0.2 to 0.4 and the number of blades are varied from 2 to 6 at a fixed hub rotational speed. The results show that, the maximum flow rate is achieved at a blade angle of attack of about 45 degrees for when the number of blades is set equal to 4 at most rotational velocities. The numerical results show that as the hub to tip ratio is decreased, the mass flow rate is increased. For a hub to tip ratio of 0.2, and an angle of attack around 45 degrees with 4 blades, a maximum mass flow rate is achieved.


2019 ◽  
Vol 826 ◽  
pp. 117-124
Author(s):  
Yurii Baidak ◽  
Iryna Vereitina

The paper relates to the field of measuring technologies and deals with the enhancement of thermoconvective method when it is applied for the experimental determination of such hydrodynamics indicators as mass flow rate and velocity of flow by their indirect parameters - capacity of the heater and the temperatures obtained from two thermal sensors, provided that they are located on the hermetic piping system surface. The issue of determination of correction factor on heterogeneity of liquid temperature distribution in the pipe cross section depending on pipe diameter and fluid movement velocity was clarified. According to the results of numerical calculations, the dependencies of temperature gradient on the pipe surface and the correction factor on the heterogeneity of the temperature distribution along the pipe cross-section under the heater in the function of the velocity of flow in pipes of different diameters are plotted. These dependencies specify the thermal method of studying the fluid flow in the pipes, simplify the experiment conduction, are useful in processing of the obtained results and can be applied in measuring engineering.


2020 ◽  
Vol 82 (3) ◽  
Author(s):  
Muji Setiyo ◽  
Budi Waluyo ◽  
Nurkholis Hamidi

The ½ cycle refrigeration system on LPG fueled vehicles has a significant cooling effect. However, the cooling is very dependent on the heat exchange process in the evaporator. Therefore, this paper analyses the deviation of the actual cooling curve from the ideal scenario carried out on a laboratory scale. The analytical method used is the calculation of the effectiveness of the evaporator, which compares the actual to the potential heat transfer capacity. The LPG flow rate was varied from 1-6 g/s, while the evaporation pressure ranged between 0.05, 0.10, and 0.15 MPa, which applied to compact type evaporators with dimensions of 262 ´ 200 mm, with a thickness of 65 mm. The research results confirm that the higher the LPG mass flow rate, the lower the heat transfer effectiveness. At the higher LPG mass flow rate, heat transfer occurs less optimally,  due to incomplete evaporation of LPG in the evaporator.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4182
Author(s):  
Emil Sasimowski ◽  
Łukasz Majewski ◽  
Marta Grochowicz

The study investigates the effect of the content and size of wheat bran grains on selected properties of a lignocellulosic biocomposite on a polyethylene matrix. The biocomposite samples were made by injection method of low-density polyethylene with 5%, 10% and 15% by weight of wheat bran. Three bran fractions with grain sizes <0.4 mm, 0.4–0.6 mm and 0.6–0.8 mm were used. The properties of the mouldings (after primary shrinkage) were examined after their 2.5-year natural aging period. Processing properties, such as MFR (mass flow rate) and processing shrinkage, were determined. Selected physical, mechanical and structural properties of the produced biocomposite samples were tested. The results allowed the determination of the influence of both the content of bran and the size of its grains on such properties of the biocomposite as: color, gloss, processing shrinkage, tensile strength, MFR mass flow rate, chemical structure (FTIR), thermal properties (DSC, TG), p-v-T relationship. The tests did not show any deterioration of the mechanical characteristics of the tested composites after natural aging.


Author(s):  
Ali Mohammadi ◽  
Masoud Boroomand

This paper presents the design procedure of a ducted contra-rotating axial flow fan and investigates the flow behavior inside it using ANSYS CFX-15 flow solver. This study investigates parameters such as pressure ratio, inlet mass flow rate and efficiency in different operating points. This system consists of two rotors with an outer diameter of 434 mm and an inner diameter of 260 mm which rotate contrary to each other with independent nominal rotational speeds of 1300 rpm. Blades’ maximum thickness and rotational speeds of each rotor will be altered as well as the axial distance between the two rotors to investigate their effect on the overall performance of the system. Designed to deliver a total pressure ratio of 1.005 and a mass flow rate of 1.8 kg/s at nominal rotational speeds, this system proves to be much more efficient compared to the conventional rotor-stator fans. NACA-65 airfoils are used in this analysis with the necessary adjustments at each section. Inverse design method is used for the first rotor and geometrical constraints are employed for the second one to have an axial inlet and outlet flow without using any inlet or outlet guide vanes. Using free vortex swirl distribution method, characteristic parameters and the necessary data for 3D generation of this model are obtained. The appropriate grid is generated using ATM method in ANSYS TurboGrid and the model is simulated in CFX-15 flow solver by employing k-ε turbulence model in the steady state condition. Both design algorithm and simulation analysis confirm the high anticipated efficiency for this system. The accuracy of the design algorithm will be explored and the most optimum operating points in different rotational speed ratios and axial distances will be identified. By altering the outlet static pressure of the system, the characteristic map is obtained.


Author(s):  
Se Won Kim ◽  
Sang Kyoon Lee ◽  
Hee Cheon No

The effect of non-condensable gas on the subcooled water critical flow in a safety valve is investigated experimentally at various subcoolings with 3 different disk lifts. To evaluate its effect on the critical pressure ratio and critical flow rate, three parameters are considered: the ratios of outlet pressure to inlet pressure, the subcooling to inlet temperature, and the gas volumetric flow to water volumetric flow are 0.15–0.23, 0.07–0.12, and 0–0.8, respectively. It turns out that the critical pressure ratio is mainly dependent on the subcooling, and its dependency on the gas fraction and the pressure drop is relatively small. When the ratio of nitrogen gas volumetric flow to water volumetric flow becomes lower than 20%, the subcooled water critical flow rate is decreased about 10% compare to the water flow rate of without non-condensable gas. However, it maintains a constant value after the ratio of gas volumetric flow to water volumetric flow becomes higher than 20%. The subcooled water critical flow correlation, which considers subcooling, disc lift, backpressure, and non-condensable gas, shows good agreement with the total present experimental data with the root mean square error 8.17%.


Author(s):  
Hemant Kumar ◽  
Chetan S. Mistry

Abstract The Supercritical carbon-dioxide Brayton cycle main attraction is due to the Supercritical characteristic of the working fluid, carbon-dioxide (SCO2). Some of the advantages of using SCO2 are relatively low turbine inlet temperature, the compression work will be low, and the system will be compact due to the variation of thermodynamic properties (like density, and specific heat ratio) of SCO2 near the critical point. SCO2 behave more like liquid when its state is near the critical point (Total Pressure = 7.39 MPa, Total Temperature = 305 K), operating compressor inlet near critical point can minimize compression work. For present study the centrifugal compressor was designed to operate at 75,000 rpm with pressure ratio (P.R) = 1.8 and mass flow rate = 3.53 kg/s as available from Sandai report. Meanline design for centrifugal compressor with SCO2 properties was done. The blade geometry was developed using commercial CAD Ansys Bladegen. The flow domain was meshed using Ansys TurboGrid. ANSYS CFX was used as a solver for present numerical study. The thermodynamic properties of SCO2 were imported from the ANSYS flow material library using SCO2.RPG [NIST thermal physics properties of fluid system]. In order to ensure the change in flow physics the mesh independence study was also conducted. The present paper discuss about the performance and flow field study targeting different mass flow rates as exit boundary condition. The comparison of overall performance (Pressure Ratio, the Blade loading, Stage efficiency and Density variation) was done with three different mass flow rates. The designed and simulated centrifugal compressor meets the designed pressure rise requirement. The variation of mass flow rate on performance of centrifugal compressor was tend to be similar to conventional centrifugal compressor. The paper discusses about the effect of variation in density, specific heat ratio and pressure of SCO2 with different mass flow outlet condition. The performance map of numerical study were validated with experiment results and found in good agreement with experimental results. The change in flow properties within the rotor flow passage are found to be interesting and very informative for future such centrifugal compressor design for special application of SCO2 Brayton cycle. 80% mass flow rate has given better results in terms of aerodynamic performance. Abrupt change in thermodynamic properties was observed near impeller inlet region. Strong density variations are observed at compressor inlet.


Sign in / Sign up

Export Citation Format

Share Document