Numerical Simulation of the Severe Cold Bending of Thick Steel Plates

1992 ◽  
Vol 114 (2) ◽  
pp. 246-248
Author(s):  
K. A. Soudki ◽  
M. Sansalone ◽  
A. R. Ingraffea ◽  
H. Vossoughi

This paper presents results of a finite element study of the severe cold bending of thick, high-strength steel plates using an explicit, two-dimensional, finite element code. A parametric study was performed to study the effect of contact surface conditions and the plate’s material model on the behavior of the plate during cold bending. The results of these numerical studies were compared with experimental data measured by Weng in 1984 and analytical equations proposed by Dat in 1980. It was found that the model with isotropic hardening and no friction showed the best agreement with the experimental and analytical results.

2010 ◽  
Vol 97-101 ◽  
pp. 200-203 ◽  
Author(s):  
Ke Chen ◽  
Jian Ping Lin ◽  
Mao Kang Lv ◽  
Li Ying Wang

With the increasing use of finite element analysis method in sheet forming simulations, springback predictions of advanced high strength steel (AHSS) sheet are still far from satisfactory precision. The main purpose of this paper was to provide a method for accurate springback prediction of AHSS sheet. Material model with Hill’48 anisotropic yield criterion and nonlinear isotropic/kinematic hardening rule were applied to take account the anisotropic yield behavior and the Bauschinger effect during forming processes. U-channel forming and springback simulation was performed using ABAQUS software. High strength DP600 sheet was investigated in this work. The simulation results obtained with the proposed material model agree well with the experimental results, which show a remarkable improvement of springback prediction compared with the commonly used isotropic hardening model.


Author(s):  
K W Dalgarno ◽  
A J Day ◽  
T H C Childs

This paper describes a finite element analysis of a synchronous belt tooth under operational loads and conditions with the objective of obtaining a greater understanding of belt failure by tooth root cracking through an examination of the strains within the facing fabric in the belt. The analysis used the ABAQUS finite element program, and was based on a two-dimensional finite element model incorporating a hyperelastic material model for the elastomer compound. Contact between the belt tooth face and the pulley groove was modelled using surface interface elements which allowed only compression and shear forces at the contact surfaces. It is concluded that the critical strains in the facing fabric of the belt, and therefore the belt life, are largely determined by the tangential loading condition on the belt teeth.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 350 ◽  
Author(s):  
Jaakko Hannula ◽  
David Porter ◽  
Antti Kaijalainen ◽  
Mahesh Somani ◽  
Jukka Kömi

The direct quenching process is an energy- and resource-efficient process for making high-strength structural steels with good toughness, weldability, and bendability. This paper presents the results of an investigation into the effect of molybdenum and niobium on the microstructures and mechanical properties of laboratory rolled and direct-quenched 11 mm thick steel plates containing 0.16 wt.% C. Three of the studied compositions were niobium-free, having molybdenum contents of 0 wt.%, 0.25 wt.%, and 0.5 wt.%. In addition, a composition containing 0.25 wt.% molybdenum and 0.04 wt.% niobium was studied. Prior to direct quenching, finish rolling temperatures (FRTs) of about 800 °C and 900 °C were used to obtain different levels of austenite pancaking. The final direct-quenched microstructures were martensitic and yield strengths varied in the range of 766–1119 MPa. Mo and Nb additions led to a refined martensitic microstructure that resulted in a good combination of strength and toughness. Furthermore, Mo and Nb alloying significantly reduced the amount of strain-induced ferrite in the microstructure at lower FRTs (800 °C). The steel with 0.5 wt.% Mo exhibited a high yield strength of 1119 MPa combined with very low 28 J transition temperature of −95 °C in the as-quenched condition. Improved mechanical properties of Mo and Mo–Nb steels can be attributed to the improved boron protection. Also, the crystallographic texture of the investigated steels showed that Nb and Nb–Mo alloying increased the amount of {112}<131> and {554}<225> texture components. The 0Mo steel also contained the texture components of {110}<110> and {011}<100>, which can be considered to be detrimental for impact toughness properties.


1989 ◽  
Vol 111 (3) ◽  
pp. 259-265 ◽  
Author(s):  
H. Vossoughi ◽  
K. Soudki ◽  
R. N. White ◽  
A. R. Ingraffea ◽  
M. Sansalone

The use of cold-bent plates, instead of welded corner joints, in the fabrication of pressure vessels can reduce production costs. The cold-bending operation is relatively easy, inexpensive, and requires minimum quality control. The attractiveness of using cold-bent plates as a potential substitute for plates with welded corner joints motivated the fatigue study described here. Fatigue test resutls are reported for nineteen 25-mm thick HY80 and HY100 steel plates, cold-bent to a nominal bend angle of 90 deg and an R/t (inner bend radius/thickness) of 1.5, and ten 25-mm thick HY80 welded corner joints. Testing was performed under zero-to-tension loading (stress ratio R = 0) at room temperature and at a frequency of 4 Hz on specimens that retained the actual cold-bending-induced residual stresses. These test results indicate that the cold-bent plates may be a good alternative to welded corner joints for cyclic loading histories.


Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 141
Author(s):  
Yahui Shi ◽  
Ang Hu ◽  
Taisheng Du ◽  
Xinke Xiao ◽  
Bin Jia

To demonstrate the importance of incorporating Lode angle into fracture criterion in predicting the penetration resistance of high-strength steel plates, ballistic tests of blunt-nosed projectiles with a diameter of 5.95 mm impacted 4 mm thick Weldox 900 E steel plates were conducted. Impacting velocity range was 136.63~381.42 m/s. The fracture behavior and the ballistic limit velocities (BLVs) were obtained by fitting the initial-residual velocities of the projectiles. Subsequently, axisymmetric finite element (FE) models parallel to the tests were built by using Abaqus/Explicit software, and the Lode-independent Johnson–Cook (JC) and the Lode-dependent ASCE fracture criterion were incorporated into the finite element model for numerical simulation. Meanwhile, to verify the sensitivity of the mesh size in the numerical simulation, different mesh sizes were used in the shear plug area of the target. It can be found that Weldox 900 E steel has obvious mesh size sensitivity by comparing the experimental results and numerical simulation, and the JC fracture criterion and the ASCE fracture criterion predicted similar BLV for the same mesh size.


2011 ◽  
Vol 2 (2) ◽  
pp. 217-227
Author(s):  
M. Safaei ◽  
W. De Waele

The first part of this study discusses the influence of element type on parameters such asaccuracy of the FE simulation, simulation time and convergence. Guidelines on optimal implementation ofelement types are proposed. It is shown that an inappropriate choice of element type results in difficulties inconvergence of the simulation or gives rise to problems such as shear locking in elements. In the secondpart of this study a series of finite element simulations using the Hill’48 planar anisotropic yield criterion anda standard U-shape forming test based on the NUMISHEET’93 benchmark was performed. Theeffectiveness of different isotropic hardening laws and different contact models is investigated. The mostappropriate hardening and contact definitions are defined from the viewpoint of optimal springbackprediction. Finally, the influence of the orientation of sheet strips relative to the rolling direction onspringback angles is evaluated.


Sign in / Sign up

Export Citation Format

Share Document