The Design and Testing of a Radial Flow Turbine for Aerodynamic Research

1992 ◽  
Vol 114 (2) ◽  
pp. 411-418 ◽  
Author(s):  
I. Huntsman ◽  
H. P. Hodson ◽  
S. H. Hill

This paper describes the design of a high-speed radial inflow turbine for use as part of a gas generator, and the design of a large-scale (1.2 m tip diameter) low-speed model of the high-speed turbine. Streamline curvature throughflow, two-dimensional blade-to-blade, and fully three-dimensional inviscid and viscous calculation methods have been used extensively in the analysis of the designs. The use of appropriate scaling parameters and their impact on turbine performance is discussed. A simple model shows, for example, how to model the blade lean in the inducer, which serves to balance the effect of meridional curvature at inlet to the rotor and can be used to unload the rotor tip. A brief description of the low-speed experimental facility is followed by a presentation and discussion of experimental results. These include surface flow visualization patterns on both the rotor and stator blades and blade row exit traverses.

Author(s):  
I. Huntsman ◽  
H. P. Hodson ◽  
S. H. Hill

This paper describes the design of a high-speed radial inflow turbine for use as part of a gas-generator, and the design of a large-scale (1.2 m tip dia.) low-speed model of the high-speed turbine. Stream-line curvature throughflow, two-dimensional blade-to-blade and fully three-dimensional inviscid and viscous calculation methods have been used extensively in the analysis of the designs. The use of appropriate scaling parameters and their impact on turbine performance is discussed. A simple model shows, for example, how to model the blade lean in the inducer which serves to balance the effect of meridional curvature at inlet to the rotor and can be used to unload the rotor tip. A brief description of the low speed experimental facility is followed by a presentation and discussion of experimental results. These include surface flow visualisation patterns on both the rotor and stator blades and blade row exit traverses.


2016 ◽  
Vol 138 (11) ◽  
Author(s):  
Matteo Giovannini ◽  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Andrea Arnone ◽  
Francesco Bertini

The present activity was carried out in the framework of the Clean Sky European Research Project ITURB (optimal high-lift turbine blade aeromechanical design), aimed at designing and validating a turbine blade for a geared open-rotor engine. A cold-flow, large-scale, low-speed (LS) rig was built in order to investigate and validate new design criteria, providing reliable and detailed results while containing costs. This paper presents the design of an LS stage and describes a general procedure that allows to scale three-dimensional (3D) blades for LS testing. The design of the stator row was aimed at matching the test-rig inlet conditions and at providing the proper inlet flow field to the blade row. The rotor row was redesigned in order to match the performance of the high-speed (HS) configuration, compensating for both the compressibility effects and different turbine flow paths. The proposed scaling procedure is based on the matching of the 3D blade loading distribution between the real engine environment and the LS facility one, which leads to a comparable behavior of the boundary layer and hence to comparable profile losses. To this end, the datum blade is parameterized, and a neural-network-based methodology is exploited to guide an optimization process based on 3D Reynolds-averaged Navier–Stokes (RANS) computations. The LS stage performance was investigated over a range of Reynolds numbers characteristic of modern low-pressure turbines (LPTs) by using a multi-equation, transition-sensitive, turbulence model. Some comparisons with experimental data available within the project finally proved the effectiveness of the proposed scaling procedure.


2021 ◽  
Vol 13 (5) ◽  
pp. 2950
Author(s):  
Su-Kyung Sung ◽  
Eun-Seok Lee ◽  
Byeong-Seok Shin

Climate change increases the frequency of localized heavy rains and typhoons. As a result, mountain disasters, such as landslides and earthworks, continue to occur, causing damage to roads and residential areas downstream. Moreover, large-scale civil engineering works, including dam construction, cause rapid changes in the terrain, which harm the stability of residential areas. Disasters, such as landslides and earthenware, occur extensively, and there are limitations in the field of investigation; thus, there are many studies being conducted to model terrain geometrically and to observe changes in terrain according to external factors. However, conventional topography methods are expressed in a way that can only be interpreted by people with specialized knowledge. Therefore, there is a lack of consideration for three-dimensional visualization that helps non-experts understand. We need a way to express changes in terrain in real time and to make it intuitive for non-experts to understand. In conventional height-based terrain modeling and simulation, there is a problem in which some of the sampled data are irregularly distorted and do not show the exact terrain shape. The proposed method utilizes a hierarchical vertex cohesion map to correct inaccurately modeled terrain caused by uniform height sampling, and to compensate for geometric errors using Hausdorff distances, while not considering only the elevation difference of the terrain. The mesh reconstruction, which triangulates the three-vertex placed at each location and makes it the smallest unit of 3D model data, can be done at high speed on graphics processing units (GPUs). Our experiments confirm that it is possible to express changes in terrain accurately and quickly compared with existing methods. These functions can improve the sustainability of residential spaces by predicting the damage caused by mountainous disasters or civil engineering works around the city and make it easy for non-experts to understand.


Author(s):  
Theodosios Korakianitis ◽  
Dequan Zou

This paper presents a new method to design (or analyze) subsonic or supersonic axial compressor and turbine stages and their three-dimensional velocity diagrams from hub to tip by solving the three-dimensional radial-momentum equation. Some previous methods (matrix through-flow based on the streamfunction approach) can not handle locally supersonic flows, and they are computationally intensive when they require the inversion of large matrices. Other previous methods (streamline curvature) require two nested iteration loops to provide a converged solution: an outside iteration loop for the mass-flow balance; and an inside iteration loop to solve the radial momentum equation at each flow station. The present method is of the streamline-curvature category. It still requires the iteration loop for the mass-flow balance, but the radial momentum equation at each flow station is solved using a one-pass numerical predictor-corrector technique, thus reducing the computational effort substantially. The method takes into account the axial slope of the streamlines. Main design characteristics such as the mass-flow rate, total properties at component inlet, hub-to-tip ratio at component inlet, total enthalpy change for each stage, and the expected efficiency of each streamline at each stage are inputs to the method. Other inputs are the radial position and axial velocity component at one surface of revolution through the axial stages. These can be provided for either the hub, or the mean, or the tip location of the blading. In addition the user specifies the azimuthal deflection of the flow from the axial direction at each radius (or as a function of radius) at each blade row inlet and outlet. By construction the method eliminates radial variations of total enthalpy (work) and entropy at each blade row inlet and outlet. In an alternative formulation enthalpy variations across radial positions at each axial station are included in the analysis. The remaining three-dimensional velocity diagrams from hub to tip, and the radial location of the remaining streamlines, are obtained by solving the momentum equation using a predictor-corrector method. Examples for one turbine and one compressor design are included.


1990 ◽  
Vol 112 (3) ◽  
pp. 346-354 ◽  
Author(s):  
J. E. Borges

There are surprisingly few inverse methods described in the literature that are truly three dimensional. Here, one such method is presented. This technique uses as input a prescribed distribution of the mean swirl, i.e., radius times mean tangential velocity, given throughout the meridional section of the machine. In the present implementation the flow is considered inviscid and incompressible and is assumed irrotational at the inlet to the blade row. In order to evaluate the velocity field inside the turbomachine, the blades (supposed infinitely thin) are replaced by sheets of vorticity, whose strength is related to the specified mean swirl. Some advice on the choice of a suitable mean swirl distribution is given. In order to assess the usefulness of the present procedure, it was decided to apply it to the design of an impeller for a low-speed radial-inflow turbine. The results of the tests are described in the second part of this paper.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Gang Yu ◽  
Dong Li ◽  
Yue Shu ◽  
Zeyu Zhang

The engine/airframe interaction effects of the BWB300 on aerodynamic performances were analyzed by using the numerical simulation method. The BWB300 is a 300-seat Blended Wing Body airplane designed by the Airplane Concept Design Institute of Northwestern Polytechnical University. The engine model used for simulation was simplified as a powered nacelle. The results indicated the following: at high speed, although the engine/airframe interaction effects on the aerodynamic forces were not significant, the airframe’s upper surface flow was greatly changed; at low speed, the airframe’s aerodynamic forces (of the airplane with/without the engine) were greatly different, especially at high attack angles, i.e., the effect of the engine suction caused the engine configuration aerodynamic forces of the airframe to be bigger than those without the engine; and the engine’s installation resulting in the different development of flow separation at the airframe’s upper surface caused greater obvious differences between the 2 configurations at high angles and low speed. Moreover, at low-speed high attack angles, the separated flow from the blended area caused serious distortion at the fan inlet of the engine.


2009 ◽  
Vol 622 ◽  
pp. 33-62 ◽  
Author(s):  
R. A. HUMBLE ◽  
G. E. ELSINGA ◽  
F. SCARANO ◽  
B. W. van OUDHEUSDEN

An experimental study is carried out to investigate the three-dimensional instantaneous structure of an incident shock wave/turbulent boundary layer interaction at Mach 2.1 using tomographic particle image velocimetry. Large-scale coherent motions within the incoming boundary layer are observed, in the form of three-dimensional streamwise-elongated regions of relatively low- and high-speed fluid, similar to what has been reported in other supersonic boundary layers. Three-dimensional vortical structures are found to be associated with the low-speed regions, in a way that can be explained by the hairpin packet model. The instantaneous reflected shock wave pattern is observed to conform to the low- and high-speed regions as they enter the interaction, and its organization may be qualitatively decomposed into streamwise translation and spanwise rippling patterns, in agreement with what has been observed in direct numerical simulations. The results are used to construct a conceptual model of the three-dimensional unsteady flow organization of the interaction.


1998 ◽  
Vol 120 (3) ◽  
pp. 422-430 ◽  
Author(s):  
A. Hale ◽  
W. O’Brien

The direct approach of modeling the flow between all blade passages for each blade row in the compressor is too computationally intensive for practical design and analysis investigations with inlet distortion. Therefore a new simulation tool called the Turbine Engine Analysis Compressor Code (TEACC) has been developed. TEACC solves the compressible, time-dependent, three-dimensional Euler equations modified to include turbomachinery source terms, which represent the effect of the blades. The source terms are calculated for each blade row by the application of a streamline curvature code. TEACC was validated against experimental data from the transonic NASA rotor, Rotor 1B, for a clean inlet and for an inlet distortion produced by a 90-deg, one-per-revolution distortion screen. TEACC revealed that strong swirl produced by the rotor caused the compressor to increase in loading in the direction of rotor rotation through the distorted region and decrease in loading circumferentially away from the distorted region.


1998 ◽  
Vol 120 (3) ◽  
pp. 393-401 ◽  
Author(s):  
T. R. Camp ◽  
I. J. Day

This paper presents a study of stall inception mechanisms in a low-speed axial compressor. Previous work has identified two common flow breakdown sequences, the first associated with a short length-scale disturbance known as a “spike,” and the second with a longer length-scale disturbance known as a “modal oscillation.” In this paper the physical differences between these two mechanisms are illustrated with detailed measurements. Experimental results are also presented that relate the occurrence of the two stalling mechanisms to the operating conditions of the compressor. It is shown that the stability criteria for the two disturbances are different: Long length-scale disturbances are related to a two-dimensional instability of the whole compression system, while short length-scale disturbances indicate a three-dimensional breakdown of the flow-field associated with high rotor incidence angles. Based on the experimental measurements, a simple model is proposed that explains the type of stall inception pattern observed in a particular compressor. Measurements from a single-stage low-speed compressor and from a multistage high-speed compressor are presented in support of the model.


Author(s):  
S. Friedrichs ◽  
H. P. Hodson ◽  
W. N. Dawes

This paper describes an investigation of the aerodynamic aspects of endwall film-cooling, in which the flow field downstream of a large-scale low-speed linear turbine cascade has been measured. The integrated losses and locations of secondary flow features with and without end wait film-cooling have been determined for variations of both the coolant supply pressure and injection location. Together with previous measurements of adiabatic film-cooling effectiveness and surface-flow visualisation, these results reveal the nature of the interactions between the ejected coolant and the flow in the blade passage. Measured hole massflows and a constant static pressure mixing analysis, together with the measured losses, allow the decomposition of the losses into three distinct entropy generation mechanisms: loss generation within the hole, loss generation due to the mixing of the coolant with the mainstream, and change in secondary loss generation in the blade passage. Results show that the loss generation within the coolant holes is substantial and that ejection into regions of low static pressure increases the loss per unit coolant massflow. Ejection upstream of the three-dimensional separation lines on the endwall changes secondary flow and reduces its associated losses. The results show that it is necessary to take the three-dimensional nature of the endwall flow into account in the design of endwall film-cooling configurations.


Sign in / Sign up

Export Citation Format

Share Document