scholarly journals Through-Flow Analysis for Axial-Stage Design Including Streamline-Slope Effects

Author(s):  
Theodosios Korakianitis ◽  
Dequan Zou

This paper presents a new method to design (or analyze) subsonic or supersonic axial compressor and turbine stages and their three-dimensional velocity diagrams from hub to tip by solving the three-dimensional radial-momentum equation. Some previous methods (matrix through-flow based on the streamfunction approach) can not handle locally supersonic flows, and they are computationally intensive when they require the inversion of large matrices. Other previous methods (streamline curvature) require two nested iteration loops to provide a converged solution: an outside iteration loop for the mass-flow balance; and an inside iteration loop to solve the radial momentum equation at each flow station. The present method is of the streamline-curvature category. It still requires the iteration loop for the mass-flow balance, but the radial momentum equation at each flow station is solved using a one-pass numerical predictor-corrector technique, thus reducing the computational effort substantially. The method takes into account the axial slope of the streamlines. Main design characteristics such as the mass-flow rate, total properties at component inlet, hub-to-tip ratio at component inlet, total enthalpy change for each stage, and the expected efficiency of each streamline at each stage are inputs to the method. Other inputs are the radial position and axial velocity component at one surface of revolution through the axial stages. These can be provided for either the hub, or the mean, or the tip location of the blading. In addition the user specifies the azimuthal deflection of the flow from the axial direction at each radius (or as a function of radius) at each blade row inlet and outlet. By construction the method eliminates radial variations of total enthalpy (work) and entropy at each blade row inlet and outlet. In an alternative formulation enthalpy variations across radial positions at each axial station are included in the analysis. The remaining three-dimensional velocity diagrams from hub to tip, and the radial location of the remaining streamlines, are obtained by solving the momentum equation using a predictor-corrector method. Examples for one turbine and one compressor design are included.

1977 ◽  
Vol 99 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Jean-Pierre Veuillot

The equations of the through flow are obtained by an asymptotic theory valid when the blade pitch is small. An iterative method determines the meridian stream function, the circulation, and the density. The various equations are discretized in an orthogonal mesh and solved by classical finite difference techniques. The calculation of the steady transonic blade-to-blade flow is achieved by a time marching method using the MacCormack scheme. The space discretization is obtained either by a finite difference approach or by a finite volume approach. Numerical applications are presented.


1998 ◽  
Vol 120 (3) ◽  
pp. 422-430 ◽  
Author(s):  
A. Hale ◽  
W. O’Brien

The direct approach of modeling the flow between all blade passages for each blade row in the compressor is too computationally intensive for practical design and analysis investigations with inlet distortion. Therefore a new simulation tool called the Turbine Engine Analysis Compressor Code (TEACC) has been developed. TEACC solves the compressible, time-dependent, three-dimensional Euler equations modified to include turbomachinery source terms, which represent the effect of the blades. The source terms are calculated for each blade row by the application of a streamline curvature code. TEACC was validated against experimental data from the transonic NASA rotor, Rotor 1B, for a clean inlet and for an inlet distortion produced by a 90-deg, one-per-revolution distortion screen. TEACC revealed that strong swirl produced by the rotor caused the compressor to increase in loading in the direction of rotor rotation through the distorted region and decrease in loading circumferentially away from the distorted region.


1985 ◽  
Vol 107 (2) ◽  
pp. 301-307 ◽  
Author(s):  
I. K. Jennions ◽  
P. Stow

The purpose of this work has been to develop a quasi-three-dimensional blade design and analysis system incorporating fully linked throughflow, blade-to-blade and blade section stacking programs. In Part I of the paper, the throughflow analysis is developed. This is based on a rigorous passage averaging technique to derive throughflow equations valid inside a blade row. The advantages of this approach are that the meridional streamsurface does not have to be of a prescribed shape, and by introducing density weighted averages the continuity equation is of an exact form. Included in the equations are the effects of blade blockage, blade forces, blade-to-blade variations and loss. The solution of the equations is developed for the well-known streamline curvature method, and the contributions from these extra effects on the radial equilibrium equation are discussed. Part II of the paper incorporates the analysis into a quasi-three-dimensional computing system and demonstrates its operational feasibility.


Author(s):  
D. J. L. Smith ◽  
J. F. Barnes

In the last few years considerable progress has been made in calculating the three-dimensional flows through turbomachines. The two methods which appear to be widely used are what have come to be known as the “Streamline Curvature” and the “Matrix Through Flow” methods. At the National Gas Turbine Establishment, these advanced methods have been applied to existing turbomachines and this paper presents some of the calculated and experimental results for four axial flow machines. By making use of fairly simple loss distributions it has been found that these methods can assist towards the understanding of observed phenomena and, in the case of the axial compressor, they offer some prospect of being able to calculate the onset of surge. Also included is a brief report of work in progress to generate a computer program for the solution of the compressible velocity distribution around the surfaces of turbomachine blades, together with an indication of possible future experimental work.


Author(s):  
J Dunham

Although three-dimensional Navier-Stokes computations are coming into use more and more, streamline curvature through-flow computations are still needed, especially for multistage compressors, and where codes which run in minutes rather than hours are preferred. These methods have been made more realistic by taking account of end-wall effects and spanwise mixing by four aerodynamic mechanisms: turbulent diffusion, turbulent convection by secondary flow, spanwise migration of aerofoil boundary layer fluid and spanwise convection of fluid in blade wakes. This paper describes the models adopted in the DRA streamline curvature method for axial compressor design and analysis. Previous papers are summarized briefly before describing the new part of the model—that accounting for aerofoil boundary layers and wakes. Other changes to the previously published annulus wall boundary layer model have been made to enable it to cater for separations and end bends. The resulting code is evaluated against a range of experimental and computational results.


1990 ◽  
Author(s):  
T. Elholm ◽  
E. Ayder ◽  
R. Van Den Braembussche

The detailed three-dimensional velocity distributions, corresponding to design and off-design operation, were measured in two different circumferential cross sections of a volute by means of LDV. It is shown that the swirl has a forced vortex type velocity distribution and that the location of the swirl center is changing with mass flow. The through flow velocity distribution is primarily defined by the conservation of angular momentum. A strong interaction between the through flow and swirl velocity is observed. Flow visualisation in the tongue region reveals a reversal of the velocity at the volute inlet with increasing mass flow. The pressure drop between volute outlet and inlet at low mass flow pushes extra fluid through the tongue gap and increases the mass flow in the volute. The abrupt pressure rise at high mass flow results in local return flow perturbing the flow in the outlet pipe.


Author(s):  
Alan Hale ◽  
Walter O’Brien

The direct approach of modeling the flow between all blade passages for each blade row in the compressor is too computationally intensive for practical design and analysis investigations with inlet distortion. Therefore a new simulation tool called the Turbine Engine Analysis Compressor Code (TEACC) has been developed. TEACC solves the compressible, time-dependent, 3D Euler equations modified to include turbomachinery source terms which represent the effect of the blades. The source terms are calculated for each blade row by the application of a streamline curvature code. TEACC was validated against experimental data from the transonic NASA rotor, Rotor 1B, for a clean inlet and for an inlet distortion produced by a 90-deg, one-per-revolution distortion screen. TEACC revealed that strong swirl produced by the rotor caused the compressor to increase in loading in the direction of rotor rotation through the distorted region and decrease in loading circumferentially away from the distorted region.


2011 ◽  
Vol 35 (1) ◽  
pp. 119-143 ◽  
Author(s):  
Edvard Höfler ◽  
Janez Gale ◽  
Anton Bergant

The paper presents a procedure for hydraulic design and analysis of the blade geometry of a high specific speed runner of the Saxo-type double-regulated vertical axial turbine. The meridional through-flow in the passage from the conical guide vane apparatus to the draft-tube elbow is designed by a streamline curvature method (SCM). To validate the design method and predictions and to investigate the design duty point and a number of off-design operating regimes, an extensive CFD simulation inside the entire turbine water-passage is performed. The flow patterns downstream the guide vane apparatus and the runner exit flow are analyzed. The focus of the analysis is on distribution of the angular momentum alongside the turbine, as well as on its impact on the flow around the runner blades. The SCM design procedure presented in the paper proves to be a robust and accurate tool for the runner blade row design.


Author(s):  
Sercan Acarer ◽  
Ünver Özkol

The two-dimensional through-flow modeling of turbomachinery is still one of the most powerful tools available to the turbomachinery industry for aerodynamic design, analysis, and post-processing of test data due to its robustness and speed. Although variety of aspects of such a modeling approach are discussed in the publicly available literature for compressors and turbines, not much emphasis is placed on combined modeling of the fan and the downstream splitter of turbofan engines. The current article addresses this void by presenting a streamline curvature through-flow methodology that is suitable for inverse design for such a problem. A new split-flow method for the streamline solver, alternative to the publicly available analysis-oriented method, is implemented and initially compared with two-dimensional axisymmetric computational fluid dynamics on two representative geometries for high and low bypass ratios. The empirical models for incidence, deviation, loss, and end-wall blockage are compiled from the literature and calibrated against two test cases: experimental data of NASA two-stage fan and three-dimensional computational fluid dynamics of a custom-designed transonic fan stage. Finally, experimental validation against GE-NASA bypass fan case is accomplished to validate the complete methodology. The proposed method is a simple extension of streamline curvature method and can be applied to existing compressor methodologies with minimum numerical effort.


1992 ◽  
Vol 114 (2) ◽  
pp. 411-418 ◽  
Author(s):  
I. Huntsman ◽  
H. P. Hodson ◽  
S. H. Hill

This paper describes the design of a high-speed radial inflow turbine for use as part of a gas generator, and the design of a large-scale (1.2 m tip diameter) low-speed model of the high-speed turbine. Streamline curvature throughflow, two-dimensional blade-to-blade, and fully three-dimensional inviscid and viscous calculation methods have been used extensively in the analysis of the designs. The use of appropriate scaling parameters and their impact on turbine performance is discussed. A simple model shows, for example, how to model the blade lean in the inducer, which serves to balance the effect of meridional curvature at inlet to the rotor and can be used to unload the rotor tip. A brief description of the low-speed experimental facility is followed by a presentation and discussion of experimental results. These include surface flow visualization patterns on both the rotor and stator blades and blade row exit traverses.


Sign in / Sign up

Export Citation Format

Share Document