A General Purpose Test Facility for Evaluating Gas Lubricated Journal Bearings

Author(s):  
B. Ertas ◽  
M. Drexel ◽  
J. Van Dam ◽  
D. Hallman

The present work describes the detailed design and operational capabilities of a general purpose test facility developed to evaluate the dynamics and performance of gas lubricated journal bearings. The component level test facility was developed to serve as an initial tollgate test platform for certifying gas lubricated journal bearings into aircraft engine applications. A rotating test rig was engineered to test 70–120 mm diameter bearings at 40,000–80,000 rpm and 1200°F. The test rig described in this paper possesses design elements that enable the simultaneous application of dynamic and static load profiles of up to 1000 lb while monitoring and measuring the bearing torque. This capability allows for the characterization of several critical metrics such as bearing lift off speed characteristics, load capacity, and frequency dependent rotordynamic force coefficients. This paper discusses the functionality of the test facility and presents sample test measurements from several experiments.

Author(s):  
Keith Gary ◽  
Bugra Ertas ◽  
Adolfo Delgado

Abstract The design, construction, operational capabilities, and proof of concept results are presented for a test rig used to evaluate gas-lubricated thrust bearings. The following work is motivated by a desire to utilize the working fluid of high-performance turbomachinery, such as gas turbines, for bearing lubricant. Auxiliary equipment required to cool, pump, and clean oil for a typical thrust bearing is eliminated by taking advantage of the turbomachinery’s working fluid as bearing lubricant. The benefit of removing such auxiliary equipment is obvious when considering cost and weight of turbomachines, yet the working fluid of gas turbines typically has very low viscosity compared to oil which introduces load capacity and stability challenges. It is therefore necessary to build a facility capable of testing gas-lubricated thrust bearings to advance the technology. The test rig design in this work allows for 7 to 15 inch (180–380 mm) diameter thrust bearings, static loads up to 30,000 lbf (135 kN), and speeds up to 20 krpm. The test facility also provides up to 500 psig (3.45 MPa) static air pressure to enable testing of hydrostatic and hybrid (hydrodynamic combined with hydrostatic) bearings. This paper describes the test rig operating principle, details experimental procedures to obtain measurements, and provides test results necessary to prove the test rig concept by means of a hybrid gas bearing.


Author(s):  
Nguyen T. LaTray ◽  
Daejong Kim

This paper details the design and performance of a high-speed (up to 190,000rpm) gas foil thrust bearing (GFTB) test rig to measure bearing load capacity. Several GFTB test rigs were reported in the literature for operating speed up to 90krpm. A few recently presented works show successful runs at 135krpm for testing gas thrust bearing with viscoelastic support and 130krpm tilting pad thrust bearing with compliant structure. However, a GFTB test rig for speed range over 100krpm has not been reported. At high speed operation, the gas film thickness of the GFTB is around a few microns which makes it difficult to achieve in testing. In many cases, the measured thrust load from experiments is well below the predicted data due to difficulty in testing and instrumentation. Difficulty in validating the actual load capacity of the bearings leads to increasing the thrust bearing size to ensure sufficient load capacity in actual applications, which results in higher power consumption. This work presents detail feature of a novel GFTB test rig and test results of 38mm GFTB. The developed test rig runs up to 190krpm and measures bearing load capacity, frictional torque and temperature across bearing ID and OD. The test rig is suitable for testing GFTB with OD from 30 mm to 40 mm. The test facility successfully tests a 38 mm GFTB to its predicted load capacity of 75N (110kPa).


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Carlo Alberto Niccolini Marmont Du Haut Champ ◽  
Fabrizio Stefani ◽  
Paolo Silvestri

The aim of the present research is to characterize both experimentally and numerically journal bearings with low radial clearances for rotors in small-scale applications (e.g., microgas turbines); their diameter is in the order of ten millimetres, leading to very small dimensional clearances when the typical relative ones (order of 1/1000) are employed; investigating this particular class of journal bearings under static and dynamic loading conditions represents something unexplored. To this goal, a suitable test rig was designed and the performance of its bearings was investigated under steady load. For the sake of comparison, numerical simulations of the lubrication were also performed by means of a simplified model. The original test rig adopted is a commercial rotor kit (RK), but substantial modifications were carried out in order to allow significant measurements. Indeed, the relative radial clearance of RK4 RK bearings is about 2/100, while it is around 1/1000 in industrial bearings. Therefore, the same original RK bearings are employed in this new test rig, but a new shaft was designed to reduce their original clearance. The new custom shaft allows to study bearing behaviour for different clearances, since it is equipped with interchangeable journals. Experimental data obtained by this test rig are then compared with further results of more sophisticated simulations. They were carried out by means of an in-house developed finite element (FEM) code, suitable for thermoelasto-hydrodynamic (TEHD) analysis of journal bearings both in static and dynamic conditions. In this paper, bearing static performances are studied to assess the reliability of the experimental journal location predictions by comparing them with the ones coming from already validated numerical codes. Such comparisons are presented both for large and small clearance bearings of original and modified RKs, respectively. Good agreement is found only for the modified RK equipped with small clearance bearings (relative radial clearance 8/1000), as expected. In comparison with two-dimensional lubrication analysis, three-dimensional simulation improves prediction of journal location and correlation with experimental results.


Author(s):  
Tae Ho Kim ◽  
Moon Sung Park ◽  
Jongsung Lee ◽  
Young Min Kim ◽  
Kyoung-Ku Ha ◽  
...  

Gas foil bearings (GFBs) have clear advantages over oil-lubricated and rolling element bearings, by virtue of low power loss, oil-free operation in compact units, and rotordynamic stability at high speeds. However, because of the inherent low gas viscosity, GFBs have lower load capacity than the other bearings. In particular, accurate measurement of load capacity and dynamic characteristics of gas foil thrust bearings (GFTBs) is utmost important to widening their applications to high performance turbomachinery. In this study, a series of excitation tests were performed on a small oil-free turbomachinery with base excitations in the rotor axial direction to measure the dynamic load characteristics of a pair of six-pad, bump-type GFTBs, which support the thrust collar. An electromagnetic shaker provided dynamic sine sweep loads to the test bench (shaking table), which held rigidly the turbomachinery test rig for increasing excitation frequency from 10 Hz to 200 Hz. The magnitude of the shaker dynamic load, represented as an acceleration measured on the test rig, was increased up to 9 G (gravity). An eddy current sensor installed on the test rig housing measured the axial displacement (or vibrational amplitude) of the rotor thrust collar during the excitation tests. The axial acceleration of the rotor relative to the test rig was calculated using the measured displacement. A single degree-of-freedom base excitation model identified the frequency-dependent dynamic load capacity, stiffness, damping, and loss factor of the test GFTB for increasing shaker dynamic loads and increasing bearing clearances. The test results show that, for a constant shaker force and the test GFTB with a clearance of 155 μm, an increasing excitation frequency increases the dynamic load carried by the test GFTB, i.e., bearing reaction force, until a certain value of the frequency where it jumps down suddenly because of the influence from Duffing’s vibrations of the rotor. The bearing stiffness increases and the damping decreases dramatically as the excitation frequency increases. Generally, the bearing loss factor ranges from 0.5 to 1.5 independent of the frequency. As the shaker force increases, the bearing dynamic load, stiffness, damping, and loss factor increase depending on the excitation frequency. Interestingly, the agreements between the measured GFTB dynamic load versus the thrust runner displacement, the measured GFTB static load versus the structural deflection, and the predicted static load versus the thrust runner displacement are remarkable. Further tests with increasing GFTB clearances of 155, 180, 205, and 225 μm revealed that the vibrational amplitude increases and the jump-down frequency decreases with increasing clearances. The bearing load increases, but the bearing stiffness, damping, and loss factor decrease slightly as the clearance increases. The test results after a modification of the GFTB by rotating one side bearing plate by 30° relative to the other side bearing plate revealed insignificant changes in the dynamic characteristics. The present dynamic performance measurements provide a useful database of GFTBs for use in microturbomachinery.


1990 ◽  
Vol 112 (2) ◽  
pp. 224-229 ◽  
Author(s):  
G. Gupta ◽  
C. R. Hammond ◽  
A. Z. Szeri

The aim of this paper is to make available to the industrial designer results of the thermohydrodynamic theory of journal bearings, by providing a simplified, yet accurate model of journal bearing lubrication that can be implemented on a personal computer and be used in an interactive mode. The simplified THD theory we propose consists of two coupled ordinary differential equations for pressure and energy and an algebraic equation for viscosity, which are to be solved iteratively. Bearing load capacity, maximum bearing temperature, maximum pressure, coefficient of friction and lubricant flow rate calculated from this simplified theory compare well with results from a more sophisticated model. We also make comparisons with experimental data on full journal bearings, demonstrating substantial agreement between experiment and simplified theory.


2005 ◽  
Vol 127 (1) ◽  
pp. 8-17 ◽  
Author(s):  
Milt Davis ◽  
Peter Montgomery

Testing of a gas turbine engine for aircraft propulsion applications may be conducted in the actual aircraft or in a ground-test environment. Ground test facilities simulate flight conditions by providing airflow at pressures and temperatures experienced during flight. Flight-testing of the full aircraft system provides the best means of obtaining the exact environment that the propulsion system must operate in but must deal with limitations in the amount and type of instrumentation that can be put on-board the aircraft. Due to this limitation, engine performance may not be fully characterized. On the other hand, ground-test simulation provides the ability to enhance the instrumentation set such that engine performance can be fully quantified. However, the current ground-test methodology only simulates the flight environment thus placing limitations on obtaining system performance in the real environment. Generally, a combination of ground and flight tests is necessary to quantify the propulsion system performance over the entire envelop of aircraft operation. To alleviate some of the dependence on flight-testing to obtain engine performance during maneuvers or transients that are not currently done during ground testing, a planned enhancement to ground-test facilities was investigated and reported in this paper that will allow certain categories of flight maneuvers to be conducted. Ground-test facility performance is simulated via a numerical model that duplicates the current facility capabilities and with proper modifications represents planned improvements that allow certain aircraft maneuvers. The vision presented in this paper includes using an aircraft simulator that uses pilot inputs to maneuver the aircraft engine. The aircraft simulator then drives the facility to provide the correct engine environmental conditions represented by the flight maneuver.


1989 ◽  
Vol 111 (2) ◽  
pp. 209-214 ◽  
Author(s):  
J. A. Tichy ◽  
K. A. Connor

The properties of magnetic bearings, particularly those based on repulsive forces due to eddy currents, are determined by a complex mixture of electrical and mechanical length and time scales. A perturbation solution for the magnetic field structure based on careful ordering of these parameters has permitted the effects of realistic gap geometries to be analyzed. The load capacity of eddy current journal bearings is found to be somewhat larger than previously predicted in an earlier paper which used magnetic fields based on constant gap size. The present results may be of interest to those concerned with calculating eddy currents in conventional attractive magnetic bearings.


2021 ◽  
Vol 111 (05) ◽  
pp. 277-281
Author(s):  
Marius Willecke ◽  
Jens Brimmers ◽  
Christian Brecher

In diesem Beitrag wird die Konzeptionierung und konstruktive Umsetzung eines Back-to-Back-Verspannungsprüfstandes für Tragfähigkeitsuntersuchungen von Beveloidverzahnungen beschrieben. Im Rahmen der Konzeptionierung werden verschiedene Möglichkeiten der Umsetzung erarbeitet und bewertet.   This paper describes the conceptual design and constructive implementation of a back-to-back test rig for load capacity investigations of beveloid gears. In the course of the conceptual design, various options for implementation are developed and evaluated.


Author(s):  
Bo Zhang ◽  
Shemiao Qi ◽  
Sheng Feng ◽  
Haipeng Geng ◽  
Yanhua Sun ◽  
...  

Two multileaf gas foil journal bearings with backing bump foils and one set of gas foil thrust bearings were designed, fabricated, and used in a 100 kW class microturbine simulated rotor system to ensure stability of the system. Meanwhile, a preliminary test rig had been built to verify the simulated system stability. The rotor synchronous and subsynchronous responses were well controlled by using of the gas foil bearings. It is on the multileaf gas foil bearings with backing bump foils that the test was conducted and verified for the first time in open literatures. The success in the experiments shows that the design and fabrication of the rotor and the gas foil bearings can provide a useful guide to the development of the advanced high speed rotating machinery.


Sign in / Sign up

Export Citation Format

Share Document