An experimental investigation of a microturbine simulated rotor supported on multileaf gas foil bearings with backing bump foils

Author(s):  
Bo Zhang ◽  
Shemiao Qi ◽  
Sheng Feng ◽  
Haipeng Geng ◽  
Yanhua Sun ◽  
...  

Two multileaf gas foil journal bearings with backing bump foils and one set of gas foil thrust bearings were designed, fabricated, and used in a 100 kW class microturbine simulated rotor system to ensure stability of the system. Meanwhile, a preliminary test rig had been built to verify the simulated system stability. The rotor synchronous and subsynchronous responses were well controlled by using of the gas foil bearings. It is on the multileaf gas foil bearings with backing bump foils that the test was conducted and verified for the first time in open literatures. The success in the experiments shows that the design and fabrication of the rotor and the gas foil bearings can provide a useful guide to the development of the advanced high speed rotating machinery.

Author(s):  
B. R. Nichols ◽  
R. L. Fittro ◽  
C. P. Goyne

Many high-speed, rotating machines across a wide range of industrial applications depend on fluid film bearings to provide both static support of the rotor and to introduce stabilizing damping forces into the system through a developed hydrodynamic film wedge. Reduced oil supply flow rate to the bearings can cause cavitation, or a lack of a fully developed film layer, at the leading edge of the bearing pads. Reducing oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses due to shear forces. While machine efficiency may be improved with reduced lubricant flow, little experimental data on its effects on system stability and performance can be found in the literature. This study looks at overall system performance of a test rig operating under reduced oil supply flow rates by observing steady-state bearing performance indicators and baseline vibrational response of the shaft. The test rig used in this study was designed to be dynamically similar to a high-speed industrial compressor. It consists of a 1.55 m long, flexible rotor supported by two tilting pad bearings with a nominal diameter of 70 mm and a span of 1.2 m. The first bending mode is located at approximately 5,000 rpm. The tiling-pad bearings consist of five pads in a vintage, flooded bearing housing with a length to diameter ratio of 0.75, preload of 0.3, and a load-between-pad configuration. Tests were conducted over a number of operating speeds, ranging from 8,000 to 12,000 rpm, and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings under each condition. For nearly all operating conditions, a low amplitude, broadband subsynchronous vibration pattern was observed in the frequency domain from approximately 0–75 Hz. When the test rig was operated at running speeds above its first bending mode, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. This vibration signature is often considered a classic sign of rotordynamic instability attributed to oil whip and shaft whirl phenomena. For low and moderate load conditions, the amplitude of this 0.5x subsynchronous peak increased with decreasing oil supply flow rate at all operating speeds. Under the high load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this subsynchronous vibration including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results. Implications of reduced oil supply flow rate on system stability and operational limits are also discussed.


2011 ◽  
Vol 368-373 ◽  
pp. 1392-1395 ◽  
Author(s):  
Quan Zhou ◽  
Yu Hou ◽  
Ru Gang Chen

Because of the low power loss and high stability, foil bearings are suitable lubrication components for high speed rotational systems. At present, the foil bearings used in actual applications almost have complicated structure and are hard to manufacture. In this paper, two kinds of foil thrust bearings with simple structure are presented. Configurations of these two foil thrust bearings are introduced; meanwhile, the load capacity and running stability are also tested in a high speed micro turbine. It is shown that viscoelastic supported foil thrust bearing has higher load capacity and hemisphere convex dots supported foil thrust bearing is more stable in high speed operational condition.


2005 ◽  
Vol 128 (4) ◽  
pp. 597-605 ◽  
Author(s):  
C. J. Teo ◽  
Z. S. Spakovszky

One major challenge for the successful operation of high-power-density micro-devices lies in the stable operation of the bearings supporting the high-speed rotating turbomachinery. Previous modeling efforts by Piekos (2000, “Numerical Simulation of Gas-Lubricated Journal Bearings for Microfabricated Machines,” Ph.D. thesis, Department of Aeronautics and Astronautics, MIT), Liu et al. (2005, “Hydrostatic Gas Journal Bearings for Micro-Turbo Machinery,” ASME J. Vib. Acoust., 127, pp. 157–164), and Spakovszky and Liu (2005, “Scaling Laws for Ultra-Short Hydrostatic Gas Journal Bearings,” ASME J. Vib. Acoust. 127, pp. 254–261) have focused on the operation and stability of journal bearings. Thrust bearings play a vital role in providing axial support and stiffness, and there is a need to improve the understanding of their dynamic behavior. In this work, a rigorous theory is presented to analyze the effects of compressibility in micro-flows (characterized by low Reynolds numbers and high Mach numbers) through hydrostatic thrust bearings for application to micro-turbomachines. The analytical model, which combines a one-dimensional compressible flow model with finite-element analysis, serves as a useful tool for establishing operating protocols and assessing the stability characteristics of hydrostatic thrust bearings. The model is capable of predicting key steady-state performance indicators, such as bearing mass flow, axial stiffness, and natural frequency as a function of the hydrostatic supply pressure and thrust-bearing geometry. The model has been applied to investigate the static stability of hydrostatic thrust bearings in micro-turbine generators, where the electrostatic attraction between the stator and rotor gives rise to a negative axial stiffness contribution and may lead to device failure. Thrust-bearing operating protocols have been established for a micro-turbopump, where the bearings also serve as an annular seal preventing the leakage of pressurized liquid from the pump to the gaseous flow in the turbine. The dual role of the annular pad poses challenges in the operation of both the device and the thrust bearing. The operating protocols provide essential information on the required thrust-bearing supply pressures and axial gaps required to prevent the leakage of water into the thrust bearings. Good agreement is observed between the model predictions and experimental results. A dynamic stability analysis has been conducted, which indicates the occurrence of instabilities due to flow choking effects in both forward and aft thrust bearings. A simple criterion for the onset of axial rotor oscillations has been established and subsequently verified in a micro-turbocharger experiment. The predicted frequencies of the unstable axial oscillations compare well with the experimental measurements.


Author(s):  
Bok Seong Choe ◽  
Tae Ho Kim ◽  
Chang Ho Kim ◽  
Yong Bok Lee

This paper presents the dynamic behavior of a 225 kW class (300 HP), 60,000 rpm, permanent magnet synchronous (PMS) motor–generator system supported on gas foil bearings (GFBs). The rotor of a 225 kW PMS motor is supported by two identical gas foil journal bearings (GFJBs) and one pair of gas foil thrust bearings (GFTBs). The total weight and axial length of the coupled rotors are 272 N and 1042 mm, respectively. During the speed-up test to 60,000 rpm, unexpected large subsynchronous rotor motions appear at around 120–130 Hz above 35,040 rpm. After disassembling the motor, an inspection of the top foils of the GFJBs reveals significant rotor rubbing. Thus, the GFJBs are redesigned to have a smaller load capacity by reducing their axial length to 45 mm. In addition, three 50 μm thick shims are installed in the GFJBs at 120 deg intervals for reducing the swirl speed of air and producing bearing preloads. The modification delays the onset speed of subsynchronous motions to 43,200 rpm and decreases the amplitude of the subsynchronous motions from 20 to 15 μm. These results indicate that the modification improves the stability margin of the high-speed rotor system with increasing stiffness and damping. In addition, the logarithmic decrement trends are in good agreement with the test results.


Author(s):  
Samuel A. Howard ◽  
Luis San Andre´s

Gas foil bearings offer several advantages over traditional bearing types that make them attractive for use in high-speed turbomachinery. They can operate at very high temperatures, require no lubrication supply (oil pumps, seals, etc), exhibit very long life with no maintenance, and once operating airborne, have very low power loss. The use of gas foil bearings in high-speed turbomachinery has been accelerating in recent years, although the pace has been slow. One of the contributing factors to the slow growth has been a lack of analysis tools, benchmarked to measurements, to predict gas foil bearing behavior in rotating machinery. To address this shortcoming, NASA Glenn Research Center (GRC) has supported the development of analytical tools to predict gas foil bearing performance. One of the codes has the capability to predict rotordynamic coefficients, power loss, film thickness, structural deformation, and more. The current paper presents an assessment of the predictive capability of the code, named XLGFBTH©. A test rig at GRC is used as a simulated case study to compare rotordynamic analysis using output from the code to actual rotor response as measured in the test rig. The test rig rotor is supported on two gas foil journal bearings manufactured at GRC, with all pertinent geometry disclosed. The resulting comparison shows that the rotordynamic coefficients calculated using XLGFBTH© represent the dynamics of the system reasonably well, especially as they pertain to predicting critical speeds.


2002 ◽  
Vol 125 (1) ◽  
pp. 95-101 ◽  
Author(s):  
B. C. Pettinato ◽  
P. DeChoudhury

The paper discusses the redesign of a high-speed turbocharger for improved bearing life and mechanical operation. The bearings were changed from a pair of combination journal/thrust bearings to a pair of redesigned journal bearings with double acting thrust bearing at the center of the unit. Internal oil passages, drain cavities, and seals were also revised. These modifications resulted in reduced oil leakage across end seals, reduced coke buildup at the turbine, increased thrust load capacity, and improved rotordynamics. Both the analytical and experimental results, which consisted of bearing performance and vibration data of original and modified systems are presented.


2011 ◽  
Vol 490 ◽  
pp. 97-105 ◽  
Author(s):  
Artur Olszewski ◽  
Michał Wodtke ◽  
Piotr Hryniewicz

First gas-lubricated compliant foil bearings (CFBs) were built in the 1950s. Due to their significant advantages, such as oil-free operation, good tolerance to bearing misalignment and very low maintenance, they have been penetrating the bearing applications for high speed compressors, air-cycle machines and gas turbines. The work presented here investigates a novel idea of water-lubricated compliant foil bearings, which could be used in applications where environmentally friendly lubrication is desired, for example in hydroelectric turbines or water pumps. Experimental results collected for three prototype water-lubricated foil journal bearings are presented. The tests were conducted under steady radial load and with the sliding speed varied incrementally. A sequence of design improvements is presented, with the best bearing demonstrating friction coefficient of about 0.01 at the sliding speed of about 4 m/s and the radial load of about 300 kPa. Encountered difficulties, research methodology and the testing equipment are also described.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Hiromu Hashimoto ◽  
Masayuki Ochiai

This paper describes the stabilization method for small-bore circular journal bearings using starved lubrication. First, we describe the experimental examination to confirm the effect of supply oil conditions on stability of circular journal bearing by using a high-speed test rig. Then, the theoretical model considering the effect of amount of supply oil is discussed. Journal center trajectories are calculated by nonlinear motion analysis under various conditions. The theoretical results agree well with the experimental ones for three types of supply oil conditions and the mechanism of the stabilization by using the starved lubrication for small-bore journal bearings is clarified. Moreover, we suggest a supply oil control mechanism to stabilize the journal bearing using starved lubrication. Finally, the effectiveness of the proposed control mechanism on stability for high-speed small-bore journal bearings is verified experimentally.


1999 ◽  
Vol 122 (1) ◽  
pp. 73-81 ◽  
Author(s):  
H. Heshmat ◽  
H. Ming Chen ◽  
J. F. Walton,

Recent technological advancements make hybridization of the magnetic and foil bearings both possible and extremely attractive. Operation of the foil/magnetic bearing takes advantage of the strengths of each individual bearing while minimizing each other’s weaknesses. In this paper one possible hybrid foil and magnetic bearing arrangement is investigated and sample design and operating parameters are presented. One of the weaknesses of the foil bearings, like any hydrodynamic bearing, is that contact between the foil bearing and the shaft occurs at rest or at very low speeds and it has low load carrying capacity at low speeds. For high speed applications, AMBs are, however, vulnerable to rotor-bending or structural resonances that can easily saturate power amplifiers and make the control system unstable. Since the foil bearing is advantageous for high speed operation with a higher load carrying capacity, and the magnetic bearing is so in low speed range, it is a natural evolution to combine them into a hybrid bearing system thus utilizing the advantages of both. To take full advantage of the foil and magnetic elements comprising a hybrid bearing, it is imperative that the static and dynamic characteristics of each bearing be understood. This paper describes the development of a new analysis technique that was used to evaluate the performance of a class of gas-lubricated journal bearings. Unlike conventional approaches, the solution of the governing hydrodynamic equations dealing with compressible fluid is coupled with the structural resiliency of the bearing surfaces. The distribution of the fluid film thickness and pressures, as well as the shear stresses in a finite-width journal bearing, are computed. Using the Finite Element (FE) method, the membrane effect of an elastic top foil was evaluated and included in the overall analytical procedure. Influence coefficients were generated to address the elasticity effects of combined top foil and elastic foundation on the hydrodynamics of journal bearings, and were used to expedite the numerical solution. The overall program logic proved to be an efficient technique to deal with the complex structural compliance of various foil bearings. Parametric analysis was conducted to establish tabulated data for use in a hybrid foil/magnetic bearing design analysis. A load sharing control algorithm between the foil and magnetic elements is also discussed. [S0742-4795(00)01201-1]


Author(s):  
T Makino ◽  
S Morohoshi ◽  
S Taniguchi

This paper describes the performance characteristics of two types of journal bearings, tilting-pad and offset halves, operating under high-speed conditions where the journal peripheral speed is in excess of 100 m/s. Experimental investigations into bearing eccentricity, temperatures and dynamic coefficients were carried out with a specially designed test rig. These results are compared with theoretical data which are obtained from thermohydrodynamic lubrication theory. The agreement is satisfactory. However, further improvements are necessary to predict more accurate thermal performance of the unloaded pads.


Sign in / Sign up

Export Citation Format

Share Document