A Compact Centrifugal Blood Pump for Extracorporeal Circulation: Design and Performance

1987 ◽  
Vol 109 (3) ◽  
pp. 272-278 ◽  
Author(s):  
Shinobu Tanaka ◽  
Shuzo Yamamoto ◽  
Ken-ichi Yamakoshi ◽  
Akira Kamiya

A new compact centrifugal blood pump driven by a miniature DC servomotor has been designed for use for short-term extra corporeal and cardiac-assisted circulation. The impeller of the pump was connected directly to the motor by using a simple-gear coupling. The shaft for the impeller was sealed from blood by both a V-ring and a seal bearing. Either pulsatile or nonpusatile flow was produced by controlling the current supply to the motor. The pump characteristics and the degree of hemolysis were evaluated with regard to the configuration of the impeller with a 38-mm outer diameter in vitro tests; the impeller having the blade angles at the inlet of 20 deg and at the outlet of 50 deg was the most appropriate as a blood pump. The performance in an operation, hemolysis and thrombus formation in the pump were assessed by a left ventricular bypass experiment in dogs. It was suggested by this study that this prototype pump appears promising for use not only in animal experiments but also in clinical application.

2003 ◽  
Vol 03 (02) ◽  
pp. 187-196
Author(s):  
Y. Lee ◽  
J. K. Chang ◽  
S. H. Lee ◽  
J. U. Jang ◽  
K. B. Lee ◽  
...  

An ideal blood pump would provide sufficient flow rate against vessel pressure without hemolysis or thrombus formation. In preceding studies, it is known that non-contact operation by magnetic bearing system gives high mechanical reliability, low hemolysis and low thrombus formation. Therefore, in the present study a magnetically suspended vaneless centrifugal blood pump (MSVC-BP) has been developed for the use of cardiopulmonary bypass, in which the magnetic suspension centers the centrifugal rotor avoiding any contact. To predict the flow pattern in the pump head and to calculate shear stress on the rotor, numerical analysis has been performed using the TASCflow®. In vitro tests of hydrodynamic performance of the present pump have been carried out in mock circular system with glycerin solution, attaining a maximum flow rate of 12 L/min at 2200 rpm. In vivo tests of hemodynamic performance of the pump have also led to reasonable results for clinical usage.


1997 ◽  
Vol 20 (4) ◽  
pp. 222-228 ◽  
Author(s):  
T. Nakazawa ◽  
Y. Ohara ◽  
R. Benkowski ◽  
K. Makinouchi ◽  
Y. Takami ◽  
...  

A pivot bearing-supported centrifugal blood pump has been developed. It is a compact, cost effective, and anti-thrombogenic pump with anatomical compatibility. A preliminary evaluation of five paracorporeal left ventricular assist studies were performed on pre-conditioned bovine (70-100 kg), without cardiopulmonary bypass and aortic cross-clamping. The inflow cannula was inserted into the left ventricle (LV) through the apex and the outflow cannula affixed with a Dacron vascular graft was anastomosed to the descending aorta. All pumps demonstrated trouble free performance over a two-week screening period. Among these five studies, three implantations were subjected for one month system validation studies. All the devices were trouble free for longer than 1 month. (35, 34, and 31 days). After achieving one month studies, all experiments were terminated. There was no evidence of device induced thrombus formation inside the pump. The plasma free hemoglobin levels were within normal ranges throughout all experiments. As a consequence of these studies, a mass production model C1E3 of this pump was fabricated as a short-term assist pump. This pump has a Normalized Index of Hemolysis of 0.0007 mg/100L and the estimated wear life of the impeller bearings is longer than 8 years. The C1E3 will meet the clinical requirements as a cardiopulmonary bypass pump. For the next step, a miniaturized pivot bearing centrifugal blood pump PI-601 has been developed for use as a permanently implantable device after design optimization. The evolution from C1E3 to the PI-601 converts this pivot bearing centrifugal pump as a totally implantable centrifugal pump. A pivot bearing centrifugal pump will become an ideal assist pump for the patients with failing heart.


2021 ◽  
pp. 039139882110416
Author(s):  
Ge He ◽  
Jiafeng Zhang ◽  
Aakash Shah ◽  
Zachary B Berk ◽  
Lu Han ◽  
...  

Blood pumps have been increasingly used in mechanically assisted circulation for ventricular assistance and extracorporeal membrane oxygenation support or during cardiopulmonary bypass for cardiac surgery. However, there have always been common complications such as thrombosis, hemolysis, bleeding, and infection associated with current blood pumps in patients. The development of more biocompatible blood pumps still prevails during the past decades. As one of those newly developed pumps, the Breethe pump is a novel extracorporeal centrifugal blood pump with a hybrid magnetic and mechanical bearing with attempt to reduce device-induced blood trauma. To characterize the hydrodynamic and hemolytic performances of this novel pump and demonstrate its superior biocompatibility, we use a combined computational and experimental approach to compare the Breethe pump with the CentriMag and Rotaflow pumps in terms of flow features and hemolysis under an operating condition relevant to ECMO support (flow: 5 L/min, pressure head: ~350 mmHg). The computational results showed that the Breethe pump has a smaller area-averaged wall shear stress (WSS), a smaller volume with a scalar shear stress (SSS) level greater than 100 Pa and a lower device-generated hemolysis index compared to the CentriMag and Rotaflow pumps. The comparison of the calculated residence times among the three pumps indicated that the Breethe pump might have better washout. The experimental data from the in vitro hemolysis testing demonstrated that the Breethe pump has the lowest normalized hemolysis index (NIH) than the CentriMag and Rotaflow pumps. It can be concluded based on both the computational and experimental data that the Breethe pump is a viable pump for clinical use and it has better biocompatibility compared to the clinically accepted pumps.


1980 ◽  
Vol 44 (02) ◽  
pp. 081-086 ◽  
Author(s):  
C V Prowse ◽  
A E Williams

SummaryThe thrombogenic effects of selected factor IX concentrates were evaluated in two rabbit models; the Wessler stasis model and a novel non-stasis model. Concentrates active in either the NAPTT or TGt50 in vitro tests of potential thrombogenicity, or both, caused thrombus formation in the Wessler technique and activation of the coagulation system in the non-stasis model. A concentrate with low activity in both in vitro tests did not have thrombogenic effects in vivo, at the chosen dose. Results in the non-stasis model suggested that the thrombogenic effects of factor IX concentrates may occur by at least two mechanisms. A concentrate prepared from platelet-rich plasma and a pyrogenic concentrate were also tested and found to have no thrombogenic effect in vivo.These studies justify the use of the NAPTT and TGt50 in vitro tests for the screening of factor IX concentrates prior to clinical use.


Author(s):  
Willemijn H. F. Huijgen ◽  
Paul F. Gründeman ◽  
Tycho van der Spoel ◽  
Maarten-Jan Cramer ◽  
Paul Steendijk ◽  
...  

Objective Endoventricular circular patch plasty is a method used to reconstruct the ventricular cavity in patients with (post) ischemic left ventricular aneurysm or global dilatation. However, late redilatation with mitral regurgitation has been reported, in which postoperative apex shape seems to play an important role. We studied the feasibility of ventricular volume downsizing with a variably shaped patch in porcine hearts. Methods In five in vitro and two acute animal experiments, a dyskinetic aneurysm was simulated with a pericardial insert. Reducing patch surface by changing patch shape diminished end-diastolic volume. In vitro, static end-diastolic volume was determined for each patch shape using volumetry and echocardiography. In the acute animal experiments, preliminary observations of patch behavior in live material were made, and pressure/time relationship, dPdTmax, was registered. Results In vitro, bringing the convex patch into a flat plane reduced LV volume from 66 ± 7 mL (aneurysm) to 49 ± 5 mL. Four of 5 patch shapes further reduced volume to a mean of 38 ± 7 mL (P = 0.03). The in vitro echocardiographic measurements correlated with volumetry findings (r = 0.81). In the acute animal experiments, dPdTmax varied with patch shape, independent of volume changes. Conclusions In this pilot study, in vitro shape configuration of the resizable ventricular patch resulted in a calibrated end-diastolic volume reduction. The data of the two in vivo pilot experiments clearly indicate that change in patch configuration in the situation of more or less unchanged end-diastolic volume had impact on cardiac performance. Future studies must substantiate the results of this observation.


2020 ◽  
Vol 44 (8) ◽  
pp. 785-796 ◽  
Author(s):  
Tarcisio Leao ◽  
Bruno Utiyama ◽  
Jeison Fonseca ◽  
Eduardo Bock ◽  
Aron Andrade

1994 ◽  
Vol 17 (3) ◽  
pp. 155-162 ◽  
Author(s):  
G.J. Verkerke ◽  
H. Schraffordt Koops ◽  
R.P.H. Veth ◽  
H.J. Grootenboer ◽  
L.J. De Boer ◽  
...  

A malignant bone tumour may develop in the femur of a child. In the majority of cases it will be necessary to resect the bone involved, growth plate and adjacent tissues. A modular endoprosthetic system has been developed which can be extended non-invasively to bridge the defect resulting from such a resection. Elongation is achieved by using an external magnetic field. In vitro tests with a prototype showed that the lengthening element met all requirements. Six animal experiments showed that the lengthening element also functioned in vivo.


ASAIO Journal ◽  
2001 ◽  
Vol 47 (6) ◽  
pp. 692-695 ◽  
Author(s):  
Atsuhiro Mitsumaru ◽  
Ryohei Yozu ◽  
Toru Matayoshi ◽  
Masanori Morita ◽  
Hankei Shin ◽  
...  

2017 ◽  
Vol 17 (07) ◽  
pp. 1740023
Author(s):  
GUANGHUI WU ◽  
CHUANGYE XU ◽  
XIUJIAN LIU ◽  
CHANGYAN LIN ◽  
LIN YANG ◽  
...  

A small implantable centrifugal left ventricular assist device, the CH-VAD (CH Biomedical Inc, JiangSu, China), featuring a magnetically levitated impeller is under development. The goal of this study is to validate hydrodynamic performance and hemocompatibility of the pump through in vitro studies. The hydraulic performance was quantified experimentally by using in vitro circulation loop system, and it turned out that the pump could deliver 5[Formula: see text]L/min under a pressure of 100[Formula: see text]mmHg at a rotational speed of approximate 3400[Formula: see text]rpm. A series of in vitro tests were established according to ASTM F1841, the standard practice for the assessment of hemolysis in continuous-flow blood pumps. The results showed that the average normalized index of hemolysis (NIH) value of the VAD was 0.0007[Formula: see text][Formula: see text][Formula: see text]0.0003[Formula: see text]mg/dL. The magnetic levitation left ventricular assist device (LVAD) has good hemolytic performance and stable mechanical property. These acceptable performance results supported proceeding initial acute animal testing conditions.


Sign in / Sign up

Export Citation Format

Share Document