Passive voice coil feedback control of closed-box subwoofer systems

Author(s):  
C-Y Chen ◽  
G T-C Chiu ◽  
C-C Cheng ◽  
H Peng

In this paper, the feasibility of using a voice coil back-electromotive voltage (back-e. m.f.) signal as feedback information for closed-loop control was investigated. A dual voice coil closed-box subwoofer system is used to demonstrate the effectiveness of back-e. m.f. feedback control. A second-order filter is developed to extract the velocity information from the coil back-e. m.f. signal. A pro-portional-plus-derivative (PD) controller is well suited for reducing the harmonic distortion and extending the subwoofer bass response. Experimental results verified that the proposed control scheme effectively extended the bass response of the subwoofer system by one octave and at the same time reduced harmonic distortion by more than 6dB. The proposed feedback and control scheme can be easily implemented using inexpensive analogue components, which can further reduce the cost and complexity of the system.

1985 ◽  
Vol 107 (3) ◽  
pp. 200-206 ◽  
Author(s):  
Y. Sakawa ◽  
A. Nakazumi

In this paper we first derive a dynamical model for the control of a rotary crane, which makes three kinds of motion (rotation, load hoisting, and boom hoisting) simultaneously. The goal is to transfer a load to a desired place in such a way that at the end of transfer the swing of the load decays as quickly as possible. We first apply an open-loop control input to the system such that the state of the system can be transferred to a neighborhood of the equilibrium state. Then we apply a feedback control signal so that the state of the system approaches the equilibrium state as quickly as possible. The results of computer simulation prove that the open-loop plus feedback control scheme works well.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4239
Author(s):  
Salam J. Yaqoob ◽  
Adel Obed ◽  
Rana Zubo ◽  
Yasir I. A. Al-Yasir ◽  
Hussein Fadhel ◽  
...  

The single-stage flyback Photovoltaic (PV) micro-inverter is considered as a simple and small in size topology but requires expensive digital microcontrollers such as Field-Programmable Gate Array (FPGA) or Digital Signal Processor (DSP) to increase the system efficiency, this would increase the cost of the overall system. To solve this problem, based on a single-stage flyback structure, this paper proposed a low cost and simple analog-digital control scheme. This control scheme is implemented using a low cost ATMega microcontroller built in the Arduino Uno board and some analog operational amplifiers. First, the single-stage flyback topology is analyzed theoretically and then the design consideration is obtained. Second, a 120 W prototype was developed in the laboratory to validate the proposed control. To prove the effectiveness of this control, we compared the cost price, overall system efficiency, and THD values of the proposed results with the results obtained by the literature. So, a low system component, single power stage, cheap control scheme, and decent efficiency are achieved by the proposed system. Finally, the experimental results present that the proposed system has a maximum efficiency of 91%, with good values of the total harmonic distortion (THD) compared to the results of other authors.


Author(s):  
Nir Ben Shaya ◽  
Izhak Bucher ◽  
Amit Dolev

AbstractDescribed is a closed-loop control scheme capable of stabilizing a parametrically excited nonlinear structure in several vibration modes. By setting the relative phase between the spatially filtered response and the excitation, the open-loop unstable solution branches are stabilized under a 2:1 parametric excitation of a chosen mode of vibration. For a given phase, the closed-loop automatically locks on a limit cycle, through an Autoresonance scheme, at any desired point on the solution branches. Axially driven slender beams and nanowires develop large transverse vibration under suitable amplitudes and frequency base-excitation that are sensitive to small potential coupled field. To utilize such a structure as a sensor, stable and robust operation are made possible by the control scheme. In addition, an optimal operating point with large sensitivity to the sensed potential field can be set using phase as a tunable parameter. Detailed analysis of the dynamical behavior, experimental verifications, and demonstrations sheds light on some features of the system dynamics.


2015 ◽  
Vol 63 (7) ◽  
Author(s):  
Daniel Gaida ◽  
Christian Wolf ◽  
Robin Eccleston ◽  
Michael Bongards

AbstractClosed-loop control of the substrate feed as well as the application of online instrumentation are important to achieve optimal biogas plant operation. Therefore, this paper presents two novel approaches for online instrumentation and control to achieve optimal AD plant operation based on middle-infrared spectroscopy on the one hand and nonlinear model predictive control on the other hand. At present, research into both techniques is being performed separately, with the intention that in the future the spectroscopic measurements will be integrated into the control loop.


Micromachines ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 121 ◽  
Author(s):  
Yanru Zhao ◽  
Xiaojie Huang ◽  
Yong Liu ◽  
Geng Wang ◽  
Kunpeng Hong

A piezoelectric-driven microgripper with three-stage amplification was designed, which is able to perceive the tip displacement and gripping force. The key structure parameters of the microgripper were determined by finite element optimization and its theoretical amplification ratio was derived. The tracking experiments of the tip displacement and gripping force were conducted with a PID controller. It is shown that the standard deviation of tracking error of the tip displacement is less than 0.2 μm and the gripping force is 0.35 mN under a closed-loop control. It would provide some references for realizing high-precision microassembly tasks with the designed microgripper which can control the displacement and gripping force accurately.


Energies ◽  
2018 ◽  
Vol 12 (1) ◽  
pp. 31 ◽  
Author(s):  
Van-Quang-Binh Ngo ◽  
Minh-Khai Nguyen ◽  
Tan-Tai Tran ◽  
Young-Cheol Lim ◽  
Joon-Ho Choi

In this paper, a model predictive control scheme for the T-type inverter with an output LC filter is presented. A simplified dynamics model is proposed to reduce the number of the measurement and control variables, resulting in a decrease in the cost and complexity of the system. Furthermore, the main contribution of the paper is the approach to evaluate the cost function. By employing the selection of sector information distribution in the reference inverter voltage and capacitor voltage balancing, the execution time of the proposed algorithm is significantly reduced by 36% compared with conventional model predictive control without too much impact on control performance. Simulation and experimental results are studied and compared with conventional finite control set model predictive control to validate the effectiveness of the proposed method.


2004 ◽  
Vol 10 (1) ◽  
pp. 25-38
Author(s):  
Fenglin Wang ◽  
Chris K Mechefske

In this paper we apply a filtered-X algorithm to an active feedback control structure and derive the transfer function of a closed-loop control system. Simulation studies are then carried out on the closed-loop property while varying the parameters (input frequency, delays in plant, amplitude and phase of modeling filter). Several properties of adaptive feedback control are revealed. Experimental studies on feedback active noise control of noise in a finite duct and a small enclosure are described, and outstanding active noise control effects are achieved. Experimental results of closed-loop frequency response are also provided.


Author(s):  
M. Senthil Raja ◽  
B. Geethalakshmi

Brushless dc motor still suffers from commutation torque ripple, which primarily depends on transient line current in the commutation interval. In order to control the incoming and outgoing phase currents to change at the same rate during commutation, this paper presents a novel high boost ratio DC-DC circuit topology in the front end of the inverter. With a suitable closed loop control scheme, the proposed high boost ratio DC-DC converter is operated with two different duty ratios one during commutation period and the other during non commutation period. The cause of commutation ripple is analyzed, and the way to adjust the duty ratio for obtaining the desired dc link voltage is introduced in detail. Finally, simulation and experimental results show that, compared with the existing dc–dc converter topologies, the proposed method can obtain the desired voltage much faster and minimize commutation torque ripple more efficiently


Author(s):  
William J. Emblom

Methods for improving the robustness of panel forming including the introduction of process sensing and feedback and control has resulted in significant gains in the quality of parts and reduced failures. Initial efforts in implementing closed-loop control during panel forming used active tool elements to ensure that the total punch force followed prescribed trajectories. However, more recently local forces within the tooling have been demonstrated to not only follow desired force trajectories but have been shown to increase the operational envelope of the tooling compared to open-loop tests and even closed-loop test where the total punch force had been controlled. However, what has not been examined is the effect of local force, especially during closed-loop control panel forming operations on the total punch force measured during forming. This paper addresses this by comparing the results of both open-loop tests and closed-loop tests and examining the effects on both local and total punch forces. It was found that while open-loop forming with various constant draw bead depths resulted in varying total punch forces, once closed-loop control was implemented the total punch forces followed virtually identical trajectories. The tooling for this project included local force transducers and a total punch force transducer. In addition, active draw beads could be controlled during forming and a flexible blank holder with variable blank holder forces were part of the setup.


Sign in / Sign up

Export Citation Format

Share Document