Micro Gas Turbine Recuperator: Steady-State and Transient Experimental Investigation

Author(s):  
Mario L. Ferrari ◽  
Matteo Pascenti ◽  
Loredana Magistri ◽  
Aristide F. Massardo

The aim of this work is the experimental analysis of a primary-surface recuperator, operating in a 100 kW micro gas turbine, as in a standard recuperated cycle. These tests, performed in both steady-state and transient conditions, have been carried out using the micro gas turbine test rig, developed by the Thermochemical Power Group at the University of Genova, Italy. Even if this facility has mainly been designed for hybrid system emulations, it is possible to exploit the plant for component tests, such as experimental studies on recuperators. The valves installed in the rig make it possible to operate the plant in the standard recuperated configuration, and the facility has been equipped with new probes essential for this kind of tests. A wide-ranging analysis of the recuperator performance has been carried out with the machine, operating in stand-alone configuration, or connected to the electrical grid, to test different control strategy influences. Particular attention has been given to tests performed at different electrical load values and with different mass flow rates through the recuperator ducts. The final section of this paper reports the transient analysis carried out on this recuperator. The attention is mainly focused on thermal transient performance of the component, showing the effects of both temperature and flow steps.

Author(s):  
Mario L. Ferrari ◽  
Matteo Pascenti ◽  
Loredana Magistri ◽  
Aristide F. Massardo

The aim of this work is the experimental analysis of a primary-surface recuperator operating in a 100 kW micro gas turbine, as in a standard recuperated cycle. These tests, performed in both steady-state and transient conditions, have been carried out using the micro gas turbine test rig developed by TPG at the University of Genoa, Italy. Even if this facility has mainly been designed for hybrid system emulations, it is possible to exploit the plant for component tests, such as experimental studies on recuperators. The valves installed in the rig make it possible to operate the plant in the standard recuperated configuration, and the facility has been equipped with new probes essential for this kind of tests. A wide-ranging analysis of the recuperator performance has been carried out with the machine operating in stand-alone configuration, or connected to the electrical grid, to test different control strategy influences. Particular attention has been given to tests performed at different electrical load values and with different mass flow rates through the recuperator ducts. The final section of this paper reports the transient analysis carried out on this recuperator. The attention is mainly focused on thermal transient performance of the component, showing the effects of both temperature and flow steps.


Author(s):  
Bruno D’Alessandro ◽  
Paolo Laranci ◽  
Fabio Testarmata ◽  
Francesco Fantozzi

There is a strong interest in numerical and experimental research on syngas combustion in GTs however experimental studies require syngas generation which is costly and also provides a variable and dirty fuel gas. To investigate the combustion behaviour and GT performance when fuelled with low LHV syngas, nitrogen diluted natural gas can be considered. To this aim the micro gas turbine (mGT) available at the IPRP (Integrated Pyrolysis Regenerated Plant) pilot facility of the University of Perugia, modified to use biomass pyrolysis gas, was fuelled with a CH4−N2 mixtures at different part load conditions obtained from pipeline (CH4) and cylinders (N2). The aim of the work is to analyze the functioning condition of the mGT which is monitored by a dedicated data acquisition system. Performances are evaluated and discussed showing that nitrogen dilution does not affect significantly efficiency and NOx production while CO emission increase slightly when increasing nitrogen content and this is more evident when decreasing the load. A CFD model of the combustion chamber, which was developed and tuned in previous works by the authors, was also run to reproduce experimental data showing a good agreement and also suggesting flame detachment in the mixing tube when nitrogen is present.


Author(s):  
Mario L. Ferrari ◽  
Matteo Pascenti ◽  
Loredana Magistri ◽  
Aristide F. Massardo

The Thermochemical Power Group (TPG) of the University of Genoa designed and installed a complete hybrid system emulator test rig equipped with a 100 kW recuperated micro gas turbine, a modular cathodic vessel located between recuperator outlet and combustor inlet, and an anodic recirculation system based on the coupling of a single stage ejector with an anodic vessel. The layout of the system was carefully designed, considering the coupling between a planar SOFC stack and the 100 kW commercial machine installed at TPG laboratory. A particular pressurized hybrid system was studied to define the anodic side properties in terms of mass flow rates, pressures, and temperatures. In this work, this experimental facility is used to analyze the anodic ejector performance from fluid dynamic and thermal points of view. The attention is mainly focused on the recirculation factor value in steady-state conditions. For this reason, a wide experimental campaign was carried out to measure the behavior of this property in different operative conditions with the objective to avoid carbon deposition in the anodic circuit, in the reformer, and in the fuel cell stack.


Author(s):  
Francesco Caratozzolo ◽  
Alberto Traverso ◽  
Aristide F. Massardo

This work presents the re-engineering of the TRANSAT 1.0 code which was developed to perform off-design and transient condition analysis of Saturators and Direct Contact Heat Exchangers. This model, now available in the 2.0 release, was originally implemented in FORTRAN language, has been updated to C language, fully coded into MATLAB/Simulink® environment and validated using the extensive set of data available from the MOSAT project, carried out by the Thermochemical Power Group of the University of Genoa. The rig consists of a fully instrumented modular vertical saturator, which is controlled and monitored with a LABVIEW® computer interface. The simulation software showed fair stability in computation and in response to step variation of the main parameters driving the thermodynamic evolution of the air and water flows. Considering the actual mass flow rates, a geometric similitude was used to avoid calculation instability due to flows under 100 g/s. Overall the model proved to be reliable and accurate enough for energy system simulations.


Author(s):  
Fabio Lambruschini ◽  
Mario L. Ferrari ◽  
Alberto Traverso ◽  
Luca Larosa

A real-time dynamic model representing the pressurized fuel cell gas turbine hybrid system emulator test rig at Thermochemical Power Group (TPG) laboratories of the University of Genoa has been developed to study the fuel cell behavior during different critical operative situations like, for example, load changes (ramp and step), start-up and shut-down and, moreover, to implement an emergency shutdown strategy in order to avoid any damage to the fuel cell and to the whole system: focus has been on cathode/anode differential pressure, which model was validated against experimental data. The real emulator plant (located in Savona University campus) is composed of a 100 kW recuperated micro gas turbine, a modular cathodic vessel (4 modules of 0.8 m3 each) located between recuperator outlet and combustor inlet, and an anodic circuit (1 module of 0.8m3) based on the coupling of a single stage ejector with an anodic vessel. Different simulation tests were carried out to assess the behavior of cathode-anode pressure difference, identifying the best control strategies to minimize the pressure stress on fuel cell stack.


Author(s):  
Francesco Fantozzi ◽  
Bruno D’Alessandro ◽  
Umberto Desideri

The Integrated Pyrolysis Regenerated Plant (IPRP) concept is based on a Gas Turbine (GT) fuelled by pyrogas produced in a rotary kiln slow pyrolysis reactor; pyrolysis process by-product, char, is used to provide the thermal energy required for pyrolysis. An IPRP demonstration unit based on an 80 kWE microturbine was built at the Terni facility of the University of Perugia. The plant is made of a slow pyrolysis rotary kiln pyrolyzer, a wet scrubbing section for tar and water vapor removal, a micro gas turbine and a treatment section for the exhaust gases. This paper describes the plant layout and expected performance with different options for waste heat recovery.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Gabriel Vézina ◽  
Hugo Fortier-Topping ◽  
François Bolduc-Teasdale ◽  
David Rancourt ◽  
Mathieu Picard ◽  
...  

This paper presents the design and experimental results of a new micro gas turbine architecture exploiting counterflow within a single supersonic rotor. This new architecture, called the supersonic rim-rotor gas turbine (SRGT), uses a single rotating assembly incorporating a central hub, a supersonic turbine rotor, a supersonic compressor rotor, and a rim-rotor. This SRGT architecture can potentially increase engine power density while significantly reducing manufacturing costs. The paper presents the preliminary design of a 5 kW SRGT prototype having an external diameter of 72.5 mm and rotational speed of 125,000 rpm. The proposed aerodynamic design comprises a single stage supersonic axial compressor, with a normal shock in the stator, and a supersonic impulse turbine. A pressure ratio of 2.75 with a mass flow rate of 130 g/s is predicted using a 1D aerodynamic model in steady state. The proposed combustion chamber uses an annular reverse-flow configuration, using hydrogen as fuel. The analytical design of the combustion chamber is based on a 0D model with three zones (primary, secondary, and dilution), and computational fluid dynamics (CFD) simulations are used to validate the analytical model. The proposed structural design incorporates a unidirectional carbon-fiber-reinforced polymer rim-rotor, and titanium alloy is used for the other rotating components. An analytical structural model and numerical validation predict structural integrity of the engine at steady-state operation up to 1000 K for the turbine blades. Experimentation has resulted in the overall engine performance evaluation. Experimentation also demonstrated a stable hydrogen flame in the combustion chamber and structural integrity of the engine for at least 30 s of steady-state operation at 1000 K.


Author(s):  
Thomas Krummrein ◽  
Martin Henke ◽  
Peter Kutne

Steady state simulations are an important method to investigate thermodynamic processes. This is especially true for innovative micro gas turbine (MGT) based cycles as the complexity of such systems grows. Therefore, steady state simulation tools are required which ensure large flexibility and computation robustness. As the increased system complexity result often in more extensive parameter studies also a fast computation speed is required. While a number of steady state simulation tools for micro gas turbine based systems are described and applied in literature, the solving process of such tools is rarely explained. However, this solving process is crucial to achieve a robust and fast computation within a physically meaningful range. Therefore, a new solver routine for a steady state simulation tool developed at the DLR Institute of Combustion Technology is presented in detail in this paper. The solver routine is based on Broyden’s method. It considers boundaries during the solving process to maintain a physically and technically meaningful solution process. Supplementary methods are implemented and described which improve the computation robustness and speed. Furthermore, some features of the resulting steady state simulation tool are presented. Exemplary applications of a hybrid power plant, an inverted Brayton cycle and an aircraft auxiliary power unit show the capabilities of the presented solver routine and the steady state simulation tool. It is shown that the new solver routine is superior to the standard Simulink algebraic solver in terms of system evaluation and robustness for the given applications.


Author(s):  
S. Bücheler ◽  
A. Huber ◽  
M. Aigner

A promising technology solution to meet the demands for highly efficient and clean CHP systems with the highest load and fuel flexibility is the SOFC/MGT hybrid power plant concept (HPP). In this concept, a solid oxide fuel cell (SOFC) is combined with a micro gas turbine (MGT) to use the hot and low-caloric SOFC off-gases for further energy production. In this study, the focus is set on the development of a suitable single-stage jet-stabilized combustor which combines the functionality of a gas turbine combustor and a SOFC off-gas burner for low-caloric SOFC off-gases at combustor inlet temperatures up to 1073 K. To experimentally characterize the newly developed SOFC off-gas combustion system beyond the turbine operating conditions in the HPP, atmospheric tests were carried out. The anode and cathode flows within the test series are provided without the SOFC being in place. Reflecting the resulting SOFC off-gas conditions at different possible HPP operating points, the results from variations of the cathode and anode mass flow rates, the O2 content and the LHV were carried out and are presented. The off-gas burner proves a wide operational stability of the combustion concept with CO emissions below 10 ppm and NOx emissions below 3 ppm. The shape and location of the flame is investigated using the OH* signal detected by an ICCD camera.


Author(s):  
Roberto Capata ◽  
Enrico Sciubba

The paper describes the realization of the α-prototype of a portable power device consisting of an electrical generator with a power output of about 300 W driven by a small gas turbine set. The device is so small that it can be properly defined an ultra micro device, capable of supplying electric power in stand alone conditions and for prolonged periods of time (up to 24 hours continuously). In practice the device can be used as a convenient substitute (or replacement) for all current battery storage systems and is significantly smaller, lighter and most likely more reliable than the few existing internal combustion engines of comparable power output. The particular nomenclature is UMGTG-UDR1 (Ultra-Micro Gas Turbine Generator). The final configuration of the prototype (for which a patent is pending) is described in the paper as well, together with some of the results of the final operational tests.


Sign in / Sign up

Export Citation Format

Share Document