The α-Prototype of an Ultra-Micro-Gas Turbine at the University of Roma 1: Final Assembly and Tests

Author(s):  
Roberto Capata ◽  
Enrico Sciubba

The paper describes the realization of the α-prototype of a portable power device consisting of an electrical generator with a power output of about 300 W driven by a small gas turbine set. The device is so small that it can be properly defined an ultra micro device, capable of supplying electric power in stand alone conditions and for prolonged periods of time (up to 24 hours continuously). In practice the device can be used as a convenient substitute (or replacement) for all current battery storage systems and is significantly smaller, lighter and most likely more reliable than the few existing internal combustion engines of comparable power output. The particular nomenclature is UMGTG-UDR1 (Ultra-Micro Gas Turbine Generator). The final configuration of the prototype (for which a patent is pending) is described in the paper as well, together with some of the results of the final operational tests.

2009 ◽  
Vol 13 (4) ◽  
pp. 41-48
Author(s):  
Zheshu Ma ◽  
Zhenhuan Zhu

Indirectly or externally-fired gas-turbines (IFGT or EFGT) are novel technology under development for small and medium scale combined power and heat supplies in combination with micro gas turbine technologies mainly for the utilization of the waste heat from the turbine in a recuperative process and the possibility of burning biomass or 'dirty' fuel by employing a high temperature heat exchanger to avoid the combustion gases passing through the turbine. In this paper, by assuming that all fluid friction losses in the compressor and turbine are quantified by a corresponding isentropic efficiency and all global irreversibilities in the high temperature heat exchanger are taken into account by an effective efficiency, a one dimensional model including power output and cycle efficiency formulation is derived for a class of real IFGT cycles. To illustrate and analyze the effect of operational parameters on IFGT efficiency, detailed numerical analysis and figures are produced. The results summarized by figures show that IFGT cycles are most efficient under low compression ratio ranges (3.0-6.0) and fit for low power output circumstances integrating with micro gas turbine technology. The model derived can be used to analyze and forecast performance of real IFGT configurations.


2000 ◽  
Author(s):  
Francesco Fantozzi ◽  
Umberto Desideri

Abstract Small scale Internal Combustion Engines (ICE) powered Combined Heat and Power (CHP) plants are economically convenient when availability and efficiencies are above specified limits. Nevertheless these plants are often run without a monitoring device capable of data storing and trending and of performance evaluation. This paper describes the setting up of a powerful low-cost monitoring system for the CHP plant that powers the School of Engineering of the University of Perugia. Data acquisition is performed by interfacing a Personal Computer (PC) to existing control panels via, serial port, and to a data acquisition board for those variables that are not measured by existing devices. Performance indexes are then calculated via software. Alarms and controls are stored as well to set up a database for diagnostic purposes. The monitoring itself has already shown its troubleshooting capability in interface to maintenance personnel: history trending of variables speeds up the phase of failure identification because it eliminates those possibilities that are negated by cross referencing values of different variables.


2018 ◽  
Vol 225 ◽  
pp. 04012
Author(s):  
Firdaus Basrawi ◽  
A.I.M. Al-Anati ◽  
Thamir K. Ibrahim ◽  
Mohd Hazwan Yusof ◽  
A.A. Razak ◽  
...  

Solar farm could not penetrate grid at substantial amount because it could disturb the grid operation due to its fluctuation output. This, the objective of this study is to theoretically analyze the power output stabilization of a solar farm by integration of Micro Gas Turbine (MGT). A 1MW scale of solar farm was first designed according to IEC 60364-5-52:2003, MS281837 and AMBO Chart method. Then, designed solar farm and MGT were modelled and simulated Simulink. In this study, both system need to stabilize power output at 800 kW throughout the year. It was found that it is possible to balance the power output of the solar farm to have constant power output throughout the year at 800 kW. However, all MGTs frequently operated at partial load that decreased their efficiency. Thus, it is possible to solve the solar farm problem with the technique, but further investigation the environmental and economic impact in comparison with a conventional power generation and a solar farm only is needed.


Author(s):  
Fabio Lambruschini ◽  
Mario L. Ferrari ◽  
Alberto Traverso ◽  
Luca Larosa

A real-time dynamic model representing the pressurized fuel cell gas turbine hybrid system emulator test rig at Thermochemical Power Group (TPG) laboratories of the University of Genoa has been developed to study the fuel cell behavior during different critical operative situations like, for example, load changes (ramp and step), start-up and shut-down and, moreover, to implement an emergency shutdown strategy in order to avoid any damage to the fuel cell and to the whole system: focus has been on cathode/anode differential pressure, which model was validated against experimental data. The real emulator plant (located in Savona University campus) is composed of a 100 kW recuperated micro gas turbine, a modular cathodic vessel (4 modules of 0.8 m3 each) located between recuperator outlet and combustor inlet, and an anodic circuit (1 module of 0.8m3) based on the coupling of a single stage ejector with an anodic vessel. Different simulation tests were carried out to assess the behavior of cathode-anode pressure difference, identifying the best control strategies to minimize the pressure stress on fuel cell stack.


Author(s):  
Francesco Fantozzi ◽  
Bruno D’Alessandro ◽  
Umberto Desideri

The Integrated Pyrolysis Regenerated Plant (IPRP) concept is based on a Gas Turbine (GT) fuelled by pyrogas produced in a rotary kiln slow pyrolysis reactor; pyrolysis process by-product, char, is used to provide the thermal energy required for pyrolysis. An IPRP demonstration unit based on an 80 kWE microturbine was built at the Terni facility of the University of Perugia. The plant is made of a slow pyrolysis rotary kiln pyrolyzer, a wet scrubbing section for tar and water vapor removal, a micro gas turbine and a treatment section for the exhaust gases. This paper describes the plant layout and expected performance with different options for waste heat recovery.


1973 ◽  
Vol 187 (1) ◽  
pp. 348-353
Author(s):  
M. J. Rose

The response of vehicles to the transient forces associated with gusting of the natural wind is assuming greater prominence. Total reliance upon natural gusts is unsatisfactory since these are unpredictable and unrepeatable. Major Continental manufacturers have for several years utilized gusts produced by multiple-fan installations, the power source being either electric motors or internal-combustion engines. The M.I.R.A. equipment is centred on a single Rolls-Royce Avon gas-turbine engine, the exhaust gases from which are directed across a roadway. Measurements have indicated that the gust profiles are similar to those encountered on motorways in respect of rise-time.


2019 ◽  
Vol 26 (3) ◽  
pp. 181-187
Author(s):  
Oleksandr Cherednichenko ◽  
Serhiy Serbin ◽  
Marek Dzida

Abstract The paper considers the issue of thermo-chemical recovery of engine’s waste heat and its further use for steam conversion of the associated gas for oil and gas floating units. The characteristics of the associated gas are presented, and problems of its application in dual-fuel medium-speed internal combustion engines are discussed. Various variants of combined diesel-gas turbine power plant with thermo-chemical heat recovery are analyzed. The heat of the gas turbine engine exhaust gas is utilized in a thermo-chemical reactor and a steam generator. The engines operate on synthesis gas, which is obtained as a result of steam conversion of the associated gas. Criteria for evaluating the effectiveness of the developed schemes are proposed. The results of mathematical modeling of processes in a 14.1 MW diesel-gas turbine power plant with waste heat recovery are presented. The effect of the steam/associated gas ratio on the efficiency criteria is analyzed. The obtained results indicate relatively high effectiveness of the scheme with separate high and low pressure thermo-chemical reactors for producing fuel gas for both gas turbine and internal combustion engines. The calculated efficiency of such a power plant for considered input parameters is 45.6%.


Author(s):  
Francesco Fantozzi ◽  
Umberto Desideri

Slow pyrolysis of waste and biomass may represent an interesting solution for renewable energy conversion in highly regenerative Gas Turbine (GT) or Internal Combustion Engines (ICE) based power cycles. The combined production of a medium LHV gas to fuel the GT or the ICE and of a high LHV byproduct (tar and/or char) that may contribute to maintain the pyrolysis process, makes pyrolysis highly competitive when compared to gasification. Nevertheless few simulations of such integrated plants are available in literature also because of the lack of general and robust modeling tools for the pyrolysis process. A pilot scale rotary kiln pyrolyzer was built at the University of Perugia to investigate the main benefits and drawbacks of the technology. The pyrolyzer will provide the experimental data that are necessary both to evaluate mass and energy balances, and to support the pyrolysis simulation activity that the authors are carrying out. Namely the test rig will provide, for each given quantity and composition of the biomass or waste in input, the gas, char and tar yields and compositions and the energy provided to maintain the process. This paper describes the main features and operational possibilities of the plant.


Sign in / Sign up

Export Citation Format

Share Document