Fatigue Failure Criteria for Unidirectional Fiber Composites

1981 ◽  
Vol 48 (4) ◽  
pp. 846-852 ◽  
Author(s):  
Z. Hashin

Three-dimensional fatigue failure criteria for unidirectional fiber composites under states of cyclic stress are established in terms of quadratic stress polynomials which are expressed in terms of the transversely isotropic invariants of the cyclic stress. Two distinct fatigue failure modes, fiber mode, and matrix mode, are modeled separately. Material information needed for the failure criteria are the S-N curves for single stress components. A preliminary approach to incorporate scatter into the failure criteria is presented.

1980 ◽  
Vol 47 (2) ◽  
pp. 329-334 ◽  
Author(s):  
Z. Hashin

Three-dimensional failure criteria of unidirectional fiber composites are established in terms of quadratic stress polynomials which are expressed in terms of the transversely isotropic invariants of the applied average stress state. Four distinct failure modes—tensile and compressive fiber and matrix modes—are modeled separately, resulting in a piecewise smooth failure surface.


2015 ◽  
Vol 26 (6) ◽  
pp. 840-858 ◽  
Author(s):  
Soran Hassanifard ◽  
Mohsen Feyzi

In this study, a three-dimensional finite element model was developed to predict the fatigue life of composite bolted joints. In this model, progressive damage theory was used. The fatigue characterization was based on Hashin’s failure criteria which recognize the failure modes. To decrease the number of unidirectional tests, the effects of load ratio were considered based on Kawai’s criterion. A modified form of Miner’s rule was proposed to calculate the damage parameter. This equation corrected the effects of the fatigue failure cycles and included the effects of different load ratios. Also, this model could decrease the overestimation of the fatigue life predictions. All of the formulations were combined and used in a step-by-step solution. In this respect, a new iterative algorithm was developed so that at each step of solution, the material properties of all failed layers of each element were reduced according to the failure mode and sudden degradation rules. The estimated fatigue life was compared to the experimental data, and an excellent correlation between the results was observed. This model could monitor the damage propagation in fabricated joints.


2022 ◽  
pp. 1-24
Author(s):  
G. Corrado ◽  
A. Arteiro ◽  
A.T. Marques ◽  
J. Reinoso ◽  
F. Daoud ◽  
...  

Abstract This paper presents the extension and validation of omni-failure envelopes for first-ply failure (FPF) and last-ply failure (LPF) analysis of advanced composite materials under general three-dimensional (3D) stress states. Phenomenological failure criteria based on invariant structural tensors are implemented to address failure events in multidirectional laminates using the “omni strain failure envelope” concept. This concept enables the generation of safe predictions of FPF and LPF of composite laminates, providing reliable and fast laminate failure indications that can be particularly useful as a design tool for conceptual and preliminary design of composite structures. The proposed extended omni strain failure envelopes allow not only identification of the controlling plies for FPF and LPF, but also of the controlling failure modes. FPF/LPF surfaces for general 3D stress states can be obtained using only the material properties extracted from the unidirectional (UD) material, and can predict membrane FPF or LPF of any laminate independently of lay-up, while considering the effect of out-of-plane stresses. The predictions of the LPF envelopes and surfaces are compared with experimental data on multidirectional laminates from the first and second World-Wide Failure Exercise (WWFE), showing a satisfactory agreement and validating the conservative character of omni-failure envelopes also in the presence of high levels of triaxiality.


1999 ◽  
Author(s):  
Steven J. DeTeresa

Abstract The efficient use of thick-section fiber composites requires a proven three-dimensional failure model. Numerous failure criteria have been proposed, but the lack of critical experimental results makes it difficult to assess the accuracy of these models. It is shown that the various predictions for failure of a lamina due to the simple state of uniaxial stress plus superposed hydrostatic pressure are disparate. These differences are sufficient to allow evaluation of failure criteria using data that has the normal scatter found for composite materials. A high-pressure test system for fiber composites is described and results for the effects of pressure on the transverse and longitudinal compression strengths of a carbon fiber/epoxy lamina are discussed. Results are compared with a few representative failure models.


Author(s):  
H. A. Elliott ◽  
N. F. Mott

The conditions for equilibrium in an elastically stressed hexagonal aeolotropic medium (transversely isotropic) are formulated, and solutions are found in terms of two ‘harmonic’ functions ø1, ø2, which are solutions ofν1, ν2 being the roots of a certain quadratic equation.It is also shown that in the case of axially symmetrical stress systems the solution may be expressed in terms of the third-order differential coefficients of a single stress function Φ.The solutions for an isotropic medium may be deduced as a special case.The problems of nuclei of strain in such a hexagonal solid are solved, and the results for zinc and magnesium contrasted with those for an isotropic solid.


1998 ◽  
Vol 120 (2) ◽  
pp. 110-113 ◽  
Author(s):  
R. M. Christensen

It is shown that there is a coordination between the numbers of the elastic properties and the numbers of the failure criteria parameters for aligned fiber composites under certain realistic conditions. These conditions require a high degree of anisotropy appropriate to polymeric matrix composites such that failure decomposes into separate fiber dominated and matrix dominated modes. Failure criteria are given in both five parameter and four parameter forms. The five parameter failure form coordinates with the usual five elastic property form for transversely isotropic composites. The four parameter failure form coordinates with a reduced four elastic property form which is shown to be applicable as an approximation for the same typical fiber composites.


2017 ◽  
Vol 36 (10) ◽  
pp. 739-753 ◽  
Author(s):  
Yuling Tang ◽  
Zhengong Zhou ◽  
Shidong Pan ◽  
Zhiyong Tan ◽  
Hongwei Wu

Experiments and finite element simulation were used to investigate the influence of geometric parameters on failure response of a single-lap bolted joint. Single- and double-bolt joints in three-dimensional six-directional braided composites were tested. The failure modes and mechanisms of the joints were evaluated. To accurately predict bearing strength, a three-dimensional composite damage model was used, which included the Yamada–Sun failure criteria based on the characteristic curve method. The finite element method (FEM) was validated by experimental results. The geometric reference value and failure envelope for the single-lap bolted joint were obtained. The results showed that the carrying capacity of the single-lap bolted joint decreased and the failure mode also changed owing to the secondary bending. It can also be obtained that increased the number of bolt rows can effectively reduce the secondary bending of the plates and thus generated less severe net tensile stresses.


2013 ◽  
Vol 81 (1) ◽  
Author(s):  
Richard M. Christensen

Building upon previous work, the failure criterion for unidirectional fiber composite materials is examined using a sensitivity analysis as applied to its transverse, matrix controlled failure properties. A new and general relationship is found between these three properties thereby reducing the total number of independent properties needed to calibrate the theory to five. This completes and closes the development of failure criteria for unidirectional fiber composites by the polynomial invariants method. A broad but detailed evaluation of the resulting failure criteria is given. Future applications for these new failure criteria are discussed.


Sign in / Sign up

Export Citation Format

Share Document