Low Velocity Impact of a Viscoelastic Beam

1982 ◽  
Vol 104 (2) ◽  
pp. 210-215
Author(s):  
R. E. Llorens ◽  
E. J. McQuillen

A theoretical solution for the response of a viscoelastic beam to off-center low speed transverse impact is presented. The flexural model adopted for investigation consists of a uniform Bernoulli-Euler beam whose behavior has been generalized to include a linear viscoelastic constitutive relation for each element of the beam. Further, the beam and rigid impactor are assumed to remain in contact during the resulting motion and a consistent set of initial displacement and velocity distributions is adopted for the beam. The solution method utilizes two Laplace transforms, i.e., one with respect to space and the other with respect to time. Comparison of the numerical predictions of the theoretical model with central impact test results on graphite-epoxy composite laminates indicates a good agreement between theory and experiment.

2012 ◽  
Vol 525-526 ◽  
pp. 385-388
Author(s):  
Tian Jiao Qu ◽  
Xi Tao Zheng ◽  
Di Zhang

After the low-velocity impact test of composite laminates of T800/BA9916, CAI test and compression test of laminates with a hole have been carried out. Two types of models were set up by the finite element software ABAQUS respectively. The FEA results were good agreement with the testing results. The investigation of models with a hole indicates that the appearance time of ultimate compressive load is earlier than that of fiber breakage expanding to boundary. Moreover, the diameter and the depth of blind hole significantly influence the ultimate compressive load.


1987 ◽  
Vol 109 (1) ◽  
pp. 67-71 ◽  
Author(s):  
R. L. Ramkumar ◽  
Y. R. Thakar

An analysis to predict the transient response of a thin, curved laminated plate subjected to low velocity transverse impact by a rigid object is presented. The contact force history due to the impact phenomenon is assumed to be a known imput to the analysis. The coupled governing equations, in terms of the Airy stress function and shell deformation, are solved using Fourier series expansions for the variables. Closed-form analytical solutions for plate deflections and strains are compared with available impact test results for flat plates. Outer ply strains are used to predict fiber failures and matrix splitting between fibers in the impacted laminate.


2020 ◽  
Vol 27 (5) ◽  
pp. 533-553 ◽  
Author(s):  
Haibao Liu ◽  
Jun Liu ◽  
Yuzhe Ding ◽  
Jin Zhou ◽  
Xiangshao Kong ◽  
...  

Abstract Carbon-fibre/epoxy-matrix composites used in aerospace and vehicle applications are often susceptible to critical loading conditions and one example is impact loading. The present paper describes a detailed experimental and numerical investigation on the relatively low-velocity (i.e. <10 m/s) impact behaviour of such composite laminates. In particular, the effects of the geometry of the impactor have been studied and two types of impactor were investigated: (a) a steel impactor with a hemispherical head and (b) a flat-ended steel impactor. They were employed to strike the composite specimens with an impact energy level of 15 J. After the impact experiments, all the composite laminates were inspected using ultrasonic C-scan tests to assess the damage that was induced by the two different types of impactor. A three-dimensional finite-element (FE) model, incorporating a newly developed elastic-plastic damage model which was implemented as a VUMAT subroutine, was employed to simulate the impact event and to investigate the effects of the geometry of the impactor. The numerical predictions, including those for the loading response and the damage maps, gave good agreement with the experimental results.


2011 ◽  
Vol 284-286 ◽  
pp. 607-610
Author(s):  
Jiang Tao Ruan ◽  
Min Shen ◽  
Jing Wei Tong ◽  
Shi Bin Wang ◽  
Francesco Aymerich ◽  
...  

In this paper, the deformation measurements of impacted and non-impacted composite laminates under compressive loading are taken. [03/903]S orientated cross-ply laminated plates with impact delamination and without delamination are tested using an anti-buckling testing device in compression experiment. The delamination is induced by low-velocity impact test at the impact energy level of 3.105J. For both impacted and non-impacted specimens, the compressive deformation is measured by a carrier electronic speckle pattern interferometry (CESPI) optical measurement technique. It is found that the deformation behavior of the two specimens presents a mixed deformation mode. However, the delamination has significant effect on the compressive deformation of composite laminates.


Sign in / Sign up

Export Citation Format

Share Document