Thermal Hydraulics of Wellbores and Surface Lines During Steam/Hot Water Injection—Part I: Theoretical Model

1989 ◽  
Vol 111 (2) ◽  
pp. 55-63 ◽  
Author(s):  
T. B. Jensen ◽  
M. P. Sharma

A mathematical model is proposed for analyzing the thermal hydraulic behavior of wellbores and surface lines. The model discusses two-phase pressure drop and heat transfer for a variety of practical wellbore boundary conditions and includes theoretical formulations for calculating effects of geothermal gradient, transient heat flow to the surroundings of the wellbore, and radiation and convection heat transfer in the annulus. The model has been applied to evaluate the effects of insulation thickness, injection rate and injection time on steam temperature and quality. Some interesting performance behaviors are noted. The predictions of the model are compared with the results of other models [1, 2] and a field case [29].

1971 ◽  
Vol 11 (02) ◽  
pp. 185-197 ◽  
Author(s):  
Satter Abdus ◽  
David R. Parrish

Abstract The widely used Marx and Langenheim solution for reservoir heating by steam injection fails to account for the growth of the hot liquid zone ahead of the steam zone. Furthermore, that solution does not consider radial heat conduction both within and outside the reservoir and vertical conduction within the reservoir. In the present paper, a more realistic and generalized solution is provided by eliminating several restrictive assumptions of the ‘old theory'. However, fluid flow is not considered in this model. The partial-difference equations that describe the condensation within the steam zone and temperature distribution within the system have been solved by finite-difference schemes. Calculated results are presented to show the effects of steam injection pressures ranging from 500 to 2,500 psia and rates, 120 and 240 lb/hr-ft, on the growth of the steam and hot liquid zones. A 50-ft thick reservoir with fixed thermal and physical characteristics was considered. Results show that heat losses from the reservoir into the surrounding rocks are not greatly different from those predicted by Marx and Langenheim. However, the heat distribution is markedly different. A sizable portion of the reservoir heat was contained in the hot liquid zone which grows indefinitely. This means that heat (warm water) could arrive at the producing wells sooner than predicted by the old theory. This is particularly true for low injection rate or high injection pressure. Curiously, for a given injection rate and pressure, the heat content of the hot liquid zone remains (except for early times) essentially a constant percentage of the cumulative heat injected. INTRODUCTION In 1959. Marx and Langenheim1 made a theoretical study of reservoir heating by hot fluid injection. Their solution has been widely used in the industry for the evaluation of the steam-drive process. This solution, however, is based upon an unrealistic assumption that the growth of the hot liquid zone ahead of the steam zone is negligible. Therefore, it cannot predict the arrival of warm water at the producing wells earlier than steam. Furthermore, in the so-called ‘old theory', radial heat conduction both within and outside the reservoir was neglected. Willman et al.2 presented another analytical solution of the same problem. Their solution is comparable to the Marx-Langenheim solution and suffers from the same disadvantages. Wilson and Root3 presented a numerical solution for reservoir heating by steam injection. While radial and vertical heat conduction both within and outside the reservoir were considered, their solution was provided essentially for the injection of a noncondensable fictitious hot fluid. The specific heat of the injected fluid was assumed to be equal to the difference between the enthalpy of steam and the enthalpy of water at the reservoir temperature divided by the difference in the two temperatures. Baker4 carried out an experimental study of heat flow in steam flooding using a sand pack. 4 in. thick and 6 ft in diameter. The steam injection pressure was 2 to 5 psig and rates ranged from 22 to 299 lb/hr-ft. He showed that a significant portion of the injected heat was contained in the hot water zone. The theoretical steamed or heated volume, as calculated by the Marx and Langenheim method, fell between the experimental steamed and heated (including hot water) volumes. Spillette5 made a critical review of the known analytical solutions dealing with heat transfer during hot water injection into a reservoir. These solutions are based upon many restrictive assumptions similar to the simplified solutions of the steam heating process. Spillette also presented a numerical solution for multidimensional heat transfer problems associated with hot water injection and demonstrated the utility and accuracy of the method. Most mathematical models of steam and hot water recovery processes neglect fluid flow considerations.


1976 ◽  
Vol 16 (03) ◽  
pp. 137-146 ◽  
Author(s):  
N. Arihara ◽  
H.J. Ramey ◽  
W.E. Brigham

Abstract This study concerns nonisothermal single- and two-phase flow of a single-component fluid (water) in consolidated porous media. Linear flow experiments through cylindrical consolidated cores were performed. Both natural (Berea) and synthetic cement-consolidated performed. Both natural (Berea) and synthetic cement-consolidated sand cores were used. Fabrication of the synthetic sandstones was important to permit reproducible fabrication of high-porosity, low-permeability sandstones with thermowells, pressure ports, and glass-tube capacitance probe guides cast in place. Both hot-fluid and cold-water injection experiments were carried out in natural and synthetic sandstones. The thermal efficiency of hot-water and cold-water injection was found to depend on heat injection rate: the higher the heat injection rate, the higher the thermal efficiency. One important result of this study is that much of the previous work with nonisothermal single-phase flow in unconsolidated sands may be extended to consolidated sandstones despite the differences in the isothermal flow characteristics of these systems. In two-phase boiling flow experiments, hot, compressed liquid water entered the upstream end of the core, moved downstream, started vaporizing, and flowed through the remainder of the core as a mixture of steam and liquid water. Significant decreases in both temperature and pressure occurred within the two-phase region. Even for large temperature changes, it was found that two-phase flow can be nearly isenthalpic and steady state if heat transfer between the core and the surroundings is at a low level. Introduction Geothermal energy is being given much attention as a new source of energy. Prime questions in geothermal energy extraction are (1) how much energy can be recovered, and (2) how fast can it be extracted? To find useful answers to these questions, the basic nature of the boiling flow of water in porous media must be understood. Literature on oil recovery by hot-fluid injection and underground combustion presents some of the important features of nonisothermal, two-phase flow that appear pertinent to geothermal reservoirs. The injection of hot water to effect oil recovery was commonly considered before 1930. In 1930, Barb and Shelley mentioned a rumor that hot-water flooding had been tried in New York State and abandoned because of excessive cost. The heating and economic results of hot-water injection were evaluated in this pioneering study. pioneering study. The next study of heat transport in a formation caused by hot-fluid injection was presented by Stovall in 1934. Both laboratory and field experiments were described. Field determination of both wellbore heat losses and vertical losses from a heated formation were described in this remarkable study. Apparently, the next study of vertical heat loss on hot-fluid injection was published by Lauwerier in 1955. It was assumed that injection rate, Vw, and temperature, Ti, would remain constant; thermal conductivity in the direction of flow was zero; and the thermal conductivity in the flooded layer perpendicular to the direction of flow was infinite so that the temperature in the flooded layer, T1, was always constant at a given location in the flooded zone. Prats has called the latter condition the "Lauwerier assumption." The conductivity in the overburden and underburden, 2, was assumed to be finite and constant. The loss of heat from the injected fluid to the adjacent strata resulted in a decrease in temperature in the direction of flow. Lauwerier derived the temperature both in the injection interval and the adjacent strata as a function of time and distance. In 1959, Marx and Langenheim presented a solution for a heat-loss problem related to the one considered by Lauwerier, but where the heated region remained at a constant temperature equal to the injection temperature. Vertical heat loss reduced the size of the heated region. SPEJ P. 137


1965 ◽  
Vol 5 (02) ◽  
pp. 131-140 ◽  
Author(s):  
K.P. Fournier

Abstract This report describes work on the problem of predicting oil recovery from a reservoir into which water is injected at a temperature higher than the reservoir temperature, taking into account effects of viscosity-ratio reduction, heat loss and thermal expansion. It includes the derivation of the equations involved, the finite difference equations used to solve the partial differential equation which models the system, and the results obtained using the IBM 1620 and 7090–1401 computers. Figures and tables show present results of this study of recovery as a function of reservoir thickness and injection rate. For a possible reservoir hot water flood in which 1,000 BWPD at 250F are injected, an additional 5 per cent recovery of oil in place in a swept 1,000-ft-radius reservoir is predicted after injection of one pore volume of water. INTRODUCTION The problem of predicting oil recovery from the injection of hot water has been discussed by several researchers.1–6,19 In no case has the problem of predicting heat losses been rigorously incorporated into the recovery and displacement calculation problem. Willman et al. describe an approximate method of such treatment.1 The calculation of heat losses in a reservoir and the corresponding temperature distribution while injecting a hot fluid has been attempted by several authors.7,8 In this report a method is presented to numerically predict the oil displacement by hot water in a radial system, taking into account the heat losses to adjacent strata, changes in viscosity ratio with temperature and the thermal-expansion effect for both oil and water. DERIVATION OF BASIC EQUATIONS We start with the familiar Buckley-Leverett9 equation for a radial system:*Equation 1 This can be written in the formEquation 2 This is sometimes referred to as the Lagrangian form of the displacement equation.


2018 ◽  
Vol 135 (2) ◽  
pp. 1119-1134 ◽  
Author(s):  
Mohammad Reza Tavakoli ◽  
Omid Ali Akbari ◽  
Anoushiravan Mohammadian ◽  
Erfan Khodabandeh ◽  
Farzad Pourfattah

Author(s):  
Eon Soo Lee ◽  
Carlos H. Hidrovo ◽  
Julie E. Steinbrenner ◽  
Fu-Min Wang ◽  
Sebastien Vigneron ◽  
...  

This experimental paper presents a study of gas-liquid two phase flow in rectangular channels of 500μm × 45μm and 23.7mm long with different wall conditions of hydrophilic and hydrophobic surface, in order to investigate the flow structures and the corresponding friction factors of simulated microchannels of PEMFC. The main flow in the channel is air and liquid water is injected at a single or several discrete locations in one side wall of the channel. The flow structure of liquid water in hydrophilic wall conditioned channel starts from wavy flow, develops to stable stratified film flow, and then transits to unstable fluctuating film flow, as the pressure drop and the flow velocity of air increase from around 10 kPa to over 100 kPa. The flow structure in hydrophobic channel develops from the slug flow to slug-and-film flow with increasing pressure drop and flow velocity. The pressure drop for single phase flow is measured for a base line study, and the fRe product is in close agreement with the theoretical value (fRe = 85) of the conventional laminar flow of aspect ratio 1:11. At the low range of water injection rate, the gas phase fRe product of the two phase flow based on the whole channel area was not substantially affected by the water introduction. However, as the water injection rate increases up to 100 μL/min, the gas phase fRe product based on the whole channel area deviates highly from the single phase theoretical value. The gas phase fRe product with the actual gas phase area corrected by the liquid phase film thickness agrees with the single phase theoretical value.


1992 ◽  
Vol 114 (3) ◽  
pp. 188-193 ◽  
Author(s):  
H. A. Walker ◽  
J. H. Davidson

Entropy generated by operation of a two-phase self-pumping solar water heater under Solar Rating and Certification Corporation rating conditions is computed numerically in a methodology based on an exergy cascade. An order of magnitude analysis shows that entropy generation is dominated by heat transfer across temperature differences. Conversion of radiant solar energy incident on the collector to thermal energy within the collector accounts for 87.1 percent of total entropy generation. Thermal losses are responsible for 9.9 percent of total entropy generation, and heat transfer across the condenser accounts for 2.4 percent of the total entropy generation. Mixing in the tempering valve is responsible for 0.7 percent of the total entropy generation. Approximately one half of the entropy generated by thermal losses is attributable to the self-pumping process. The procedure to determine total entropy generation can be used in a parametric study to evaluate the performance of two-phase hot water heating systems relative to other solar water heating options.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Muritala Alade Amidu ◽  
Yacine Addad ◽  
Mohamed Kamel Riahi ◽  
Eiyad Abu-Nada

AbstractThis study intends to give qualitative results toward the understanding of different slip mechanisms impact on the natural heat transfer performance of nanofluids. The slip mechanisms considered in this study are Brownian diffusion, thermophoretic diffusion, and sedimentation. This study compares three different Eulerian nanofluid models; Single-phase, two-phase, and a third model that consists of incorporating the three slip mechanisms in a two-phase drift-flux. These slip mechanisms are found to have different impacts depending on the nanoparticle concentration, where this effect ranges from negligible to dominant. It has been reported experimentally in the literature that, with high nanoparticle volume fraction the heat transfer deteriorates. Admittingly, classical nanofluid models are known to underpredict this impairment. To address this discrepancy, this study focuses on the effect of thermophoretic diffusion and sedimentation outcome as these two mechanisms turn out to be influencing players in the resulting heat transfer rate using the two-phase model. In particular, the necessity to account for the sedimentation contribution toward qualitative modeling of the heat transfer is highlighted. To this end, correlations relating the thermophoretic and sedimentation coefficients to the nanofluid concentration and Rayleigh number are proposed in this study. Numerical experiments are presented to show the effectiveness of the proposed two-phase model in approaching the experimental data, for the full range of Rayleigh number in the laminar flow regime and for nanoparticles concentration of (0% to 3%), with great satisfaction.


Sign in / Sign up

Export Citation Format

Share Document