A Two-Dimensional Analysis of Reservoir Heating by Steam Injection

1971 ◽  
Vol 11 (02) ◽  
pp. 185-197 ◽  
Author(s):  
Satter Abdus ◽  
David R. Parrish

Abstract The widely used Marx and Langenheim solution for reservoir heating by steam injection fails to account for the growth of the hot liquid zone ahead of the steam zone. Furthermore, that solution does not consider radial heat conduction both within and outside the reservoir and vertical conduction within the reservoir. In the present paper, a more realistic and generalized solution is provided by eliminating several restrictive assumptions of the ‘old theory'. However, fluid flow is not considered in this model. The partial-difference equations that describe the condensation within the steam zone and temperature distribution within the system have been solved by finite-difference schemes. Calculated results are presented to show the effects of steam injection pressures ranging from 500 to 2,500 psia and rates, 120 and 240 lb/hr-ft, on the growth of the steam and hot liquid zones. A 50-ft thick reservoir with fixed thermal and physical characteristics was considered. Results show that heat losses from the reservoir into the surrounding rocks are not greatly different from those predicted by Marx and Langenheim. However, the heat distribution is markedly different. A sizable portion of the reservoir heat was contained in the hot liquid zone which grows indefinitely. This means that heat (warm water) could arrive at the producing wells sooner than predicted by the old theory. This is particularly true for low injection rate or high injection pressure. Curiously, for a given injection rate and pressure, the heat content of the hot liquid zone remains (except for early times) essentially a constant percentage of the cumulative heat injected. INTRODUCTION In 1959. Marx and Langenheim1 made a theoretical study of reservoir heating by hot fluid injection. Their solution has been widely used in the industry for the evaluation of the steam-drive process. This solution, however, is based upon an unrealistic assumption that the growth of the hot liquid zone ahead of the steam zone is negligible. Therefore, it cannot predict the arrival of warm water at the producing wells earlier than steam. Furthermore, in the so-called ‘old theory', radial heat conduction both within and outside the reservoir was neglected. Willman et al.2 presented another analytical solution of the same problem. Their solution is comparable to the Marx-Langenheim solution and suffers from the same disadvantages. Wilson and Root3 presented a numerical solution for reservoir heating by steam injection. While radial and vertical heat conduction both within and outside the reservoir were considered, their solution was provided essentially for the injection of a noncondensable fictitious hot fluid. The specific heat of the injected fluid was assumed to be equal to the difference between the enthalpy of steam and the enthalpy of water at the reservoir temperature divided by the difference in the two temperatures. Baker4 carried out an experimental study of heat flow in steam flooding using a sand pack. 4 in. thick and 6 ft in diameter. The steam injection pressure was 2 to 5 psig and rates ranged from 22 to 299 lb/hr-ft. He showed that a significant portion of the injected heat was contained in the hot water zone. The theoretical steamed or heated volume, as calculated by the Marx and Langenheim method, fell between the experimental steamed and heated (including hot water) volumes. Spillette5 made a critical review of the known analytical solutions dealing with heat transfer during hot water injection into a reservoir. These solutions are based upon many restrictive assumptions similar to the simplified solutions of the steam heating process. Spillette also presented a numerical solution for multidimensional heat transfer problems associated with hot water injection and demonstrated the utility and accuracy of the method. Most mathematical models of steam and hot water recovery processes neglect fluid flow considerations.

1982 ◽  
Vol 22 (05) ◽  
pp. 709-718 ◽  
Author(s):  
John Fagley ◽  
H. Scott Fogler

Abstract An improved simulation for temperature logs (TL's) in water injection wells is described. Improvements based on the reduction of assumptions used by previous investigators are demonstrated by comparison of field data and simulator results showing excellent agreement of TL profiles over the entire well depth. Initial work with the simulator has demonstrated the need for different operational procedures for definite TL surveys in mature wells (those having received significant long-term injection) as compared with young wells. The utility of short-period hot water (SPHW) injection just preceding shut-in as an injection profile amplifying scheme has been investigated in depth through the TL simulator. Finally, sensitivity studies have been run to identify the most important TL parameters and to develop guidelines for improved profiling. Introduction Injection of water into wells is done for three basic reasons: to maintain field pressure, for waterflooding, or to dispose of unwanted brine. For at least two of these it is desirable to know an injection profile. The TL is one way of defining injection profiles and is particularly useful in wells with outside-of-casing vertical flow.As fluid flows down the wellbore, the rock surrounding the wellbore (which is initially at the prevailing geothermal temperature) is heated or cooled by the injection water, depending on its temperature and the rate of heat transfer in the well. This effect is most pronounced in an injection zone where the fluid enters the rock formation, flowing radially outward, and where heat transfer occurs by both convection arid conduction. Except for hot-water and steam injection, the near-wellbore portion of the flooded zone normally will be cooled. Once the well is shut in and fluid flow is halted, the temperature of the well and the surrounding formation starts to return to the original geothermal temperature. The regions above and below the injection zone trend toward the geothermal temperature more rapidly than in the injection zone because of the greater heat transfer in the latter. Thus, by measurement of the wellbore temperature as a function of depth the location of the injection zone can be determined as the region where temperature anomalies occur.The interpretation of TL's to determine injection flow profiles has been attempted previously, both qualitatively and quantitatively. In early studies, quantitative analysis was made by use of Laplace transformations and Bessel function solutions. With the advent of the digital computer, more rigorous analysis can be made with numerical methods to treat heat transfer terms, which had to be removed by simplifying assumptions in the earlier studies.In this paper, we present an improved injection-well temperature simulator of the digital computer variety. This simulator offers an advantage over previous simulators in that wellbore-water heat transfer is modeled both before and after shut-in of the well. This capability allowed us to investigate possible solutions to the problem of lost profile definition in mature injection wells. We have found hot-water injection, for a short period before shut-in, to be a potentially important tool for defining injection fluid profiles in mature wells. SPEJ P. 709^


1989 ◽  
Vol 111 (2) ◽  
pp. 55-63 ◽  
Author(s):  
T. B. Jensen ◽  
M. P. Sharma

A mathematical model is proposed for analyzing the thermal hydraulic behavior of wellbores and surface lines. The model discusses two-phase pressure drop and heat transfer for a variety of practical wellbore boundary conditions and includes theoretical formulations for calculating effects of geothermal gradient, transient heat flow to the surroundings of the wellbore, and radiation and convection heat transfer in the annulus. The model has been applied to evaluate the effects of insulation thickness, injection rate and injection time on steam temperature and quality. Some interesting performance behaviors are noted. The predictions of the model are compared with the results of other models [1, 2] and a field case [29].


1965 ◽  
Vol 5 (02) ◽  
pp. 131-140 ◽  
Author(s):  
K.P. Fournier

Abstract This report describes work on the problem of predicting oil recovery from a reservoir into which water is injected at a temperature higher than the reservoir temperature, taking into account effects of viscosity-ratio reduction, heat loss and thermal expansion. It includes the derivation of the equations involved, the finite difference equations used to solve the partial differential equation which models the system, and the results obtained using the IBM 1620 and 7090–1401 computers. Figures and tables show present results of this study of recovery as a function of reservoir thickness and injection rate. For a possible reservoir hot water flood in which 1,000 BWPD at 250F are injected, an additional 5 per cent recovery of oil in place in a swept 1,000-ft-radius reservoir is predicted after injection of one pore volume of water. INTRODUCTION The problem of predicting oil recovery from the injection of hot water has been discussed by several researchers.1–6,19 In no case has the problem of predicting heat losses been rigorously incorporated into the recovery and displacement calculation problem. Willman et al. describe an approximate method of such treatment.1 The calculation of heat losses in a reservoir and the corresponding temperature distribution while injecting a hot fluid has been attempted by several authors.7,8 In this report a method is presented to numerically predict the oil displacement by hot water in a radial system, taking into account the heat losses to adjacent strata, changes in viscosity ratio with temperature and the thermal-expansion effect for both oil and water. DERIVATION OF BASIC EQUATIONS We start with the familiar Buckley-Leverett9 equation for a radial system:*Equation 1 This can be written in the formEquation 2 This is sometimes referred to as the Lagrangian form of the displacement equation.


2014 ◽  
Vol 1073-1076 ◽  
pp. 2310-2315 ◽  
Author(s):  
Ming Xian Wang ◽  
Wan Jing Luo ◽  
Jie Ding

Due to the common problems of waterflood in low-permeability reservoirs, the reasearch of finely layered water injection is carried out. This paper established the finely layered water injection standard in low-permeability reservoirs and analysed the sensitivity of engineering parameters as well as evaluated the effect of the finely layered water injection standard in Block A with the semi-quantitative to quantitative method. The results show that: according to the finely layered water injection standard, it can be divided into three types: layered water injection between the layers, layered water injection in inner layer, layered water injection between fracture segment and no-fracture segment. Under the guidance of the standard, it sloved the problem of uneven absorption profile in Block A in some degree and could improve the oil recovery by 3.5%. The sensitivity analysis shows that good performance of finely layered water injection in Block A requires the reservoir permeability ratio should be less than 10, the perforation thickness should not exceed 10 m, the amount of layered injection layers should be less than 3, the surface injection pressure should be below 14 MPa and the injection rate shuold be controlled at about 35 m3/d.


2014 ◽  
Author(s):  
C. L. Delgadillo-Aya ◽  
M.L.. L. Trujillo-Portillo ◽  
J.M.. M. Palma-Bustamante ◽  
E.. Niz-Velasquez ◽  
C. L. Rodríguez ◽  
...  

Abstract Software tools are becoming an important ally in making decisions on the development or implementation of an enhanced oil recovery processes from the technical, financial or risk point of view. This work, can be manually developed in some cases, but becomes more efficient and precise with the help of these tools. In Ecopetrol was developed a tool to make technical and economic evaluation of enhanced oil recovery processes such as air injection, both cyclic and continuous steam injection, and steam assisted gravity drainage (SAGD) and hot water injection. This evaluation is performed using different types of analysis as binary screening, analogies, benchmarking, and prediction using analytical models and financial and risk analysis. All these evaluations are supported by a comprehensive review that has allowed initially find favorable conditions for different recovery methods evaluated, and get a probability of success based on this review. Subsequently, according to the method can be used different prediction methods, given an idea of the process behavior for a given period. Based on the prediction results, it is possible to feed the software to generate a financial assessment process, in line with cash flow previously developed that incorporates all the elements to be considered during the implementation of a project. This allows for greater support to the choice or not the application of a method. Finally the tool to evaluate the levels of risks that outlines the development of the project based on the existing internal methodology in the company, identifying the main and level of criticality and define actions for prevention, mitigation and risk elimination.


Author(s):  
Ruslan Miftakhov ◽  
Igor Efremov ◽  
Abdulaziz S. Al-Qasim

Abstract The application of Artificial Intelligence (AI) methods in the petroleum industry gain traction in recent years. In this paper, Deep Reinforcement Learning (RL) is used to maximize the Net Present Value (NPV) of waterflooding by changing the water injection rate. This research is the first step towards showing that the use of pixel information for reinforcement learning provides many advantages, such as a fundamental understanding of reservoir physics by controlling changes in pressure and saturation without directly accounting for the reservoir petrophysical properties and wells. The optimization routine based on RL by pixel data is tested on the 2D model, which is a vertical section of the SPE 10 model. It has been shown that RL can optimize waterflooding in a 2D compressible reservoir with the 2-phase flow (oil-water). The proposed optimization method is an iterative process. In the first few thousands of updates, NPV remains in the baseline since it takes more time to converge from raw pixel data than to use classical well production/injection rate information. RL optimization resulted in improving the NPV by 15 percent, where the optimum scenario shows less watercut values and more stable production in contrast to baseline optimization. Additionally, we evaluated the impact of selecting the different action set for optimization and examined two cases where water injection well can change injection pressure with a step of 200 psi and 600 psi. The results show that in the second case, RL optimization is exploiting the limitation of the reservoir simulation engine and tries to imitate a cycled injection regime, which results in a 7% higher NPV than the first case.


2013 ◽  
Vol 756-759 ◽  
pp. 1679-1683
Author(s):  
Dong Mei Li ◽  
Xin Chun Wang ◽  
Li Nan Shi ◽  
Bo Chao Qu

This article focuses on heat conduction problems in the process of steel industry. Modeling the direct problems of heat transfer, establish heat conduction and thermal radiation model. Model discretization method are used, discussion process from one dimension to two. We give the difference schemes, and the numerical example. Through the results we compare differences between one and two dimensional models, and the impact to the results of the two heat transfer mode.


1981 ◽  
Vol 21 (02) ◽  
pp. 179-190 ◽  
Author(s):  
Y.C. Yortsos ◽  
G.R. Gavalas

Abstract This article studies the development of asymptotic and approximate solutions for the growth of the steam zone in steam injection processes in one-dimensional reservoirs at constant injection rates. These solutions generally are derived by using integral balances which include heat losses to the surroundings and the hot liquid zone. In this way, the effects of preheating caused by heat transport in the hot liquid zone ahead of the steam front are accounted for completely. At the beginning of injection, the advance of the front is well described by the Marx-Langenheim (ML) model, provided that the injection rates are sufficiently high. At longer times, deviations occur and a criterion is developed in terms of a single heat transfer dimensionless parameter, R, that defines the time interval of applicability of the ML model. The asymptotic behavior at large times depends solely on a dimensionless parameter, F, defined as the ratio of the latent to the total heat injected. It is shown that the final dimensionless expression does not depend on R (i.e., on the injection rates) although the time taken to reach the asymptotic state is influenced significantly by R. An approximate analytical solution that reduces to the respective asymptotic expressions at small and large times is obtained under conditions of high injection rates (R »1). The solution is shown to give a better approximation to the steam-zone growth rate for intermediate and large times than the approximate expressions developed by Marx and Langenheim, Mandl and Volek (MV), and Myhill and Stegemeier (MS). For a wider range of operating conditions, including low injection rates (i.e., for R between 1 and), an approximate numerical solution based on a quasisteady state approximation is presented. The proposed solution requiring very modest computation is expected to give reliable results under a variety of operating conditions. Introduction In a previous paper we dealt with the derivation of upper bounds for the volume of the steam zone in one-, two-, or three-dimensional reservoirs. The resulting expressions incorporate minimal information regarding heat transfer in the hot liquid zone and find applications in setting an upper estimate to oil recovery at constant or variable injection rates. To obtain more precise results concerning the steam zone growth, an alternative approach is initiated involving a detailed description of heat transfer in the hot liquid zone. The subject of heat transfer by convection, conduction, and lateral heat losses in the region ahead of a moving condensation front has been discussed separately in another paper. Here we make use of the results obtained in that paper to derive approximate solutions to the volume of the steam zone as a function of time. The relative importance of including preheating effects in the hot liquid zone and the surroundings when calculating the performance of a steam drive is demonstrated by comparing the solutions obtained against simple approximate expressions developed by Marx and Langenheim, and subsequently revised by Mandl and Volek, and Myhill and Stegemeier. From the comparison with exact results, the range of validity of the previous approximations can be delineated. SPEJ P. 179^


Sign in / Sign up

Export Citation Format

Share Document