Combined-Cycle System With Novel Bottoming Cycle

1984 ◽  
Vol 106 (4) ◽  
pp. 737-742 ◽  
Author(s):  
A. I. Kalina

A new thermodynamic energy cycle has been developed using a multicomponent working agent. This cycle is designed to replace the currently used Rankine Cycle as a bottoming cycle for a combined-cycle energy system as well as for generating electricity using low-temperature heat sources. Several combined power systems based on this cycle have been designed and cost-estimated. The efficiency of this cycle is from 1.6 to 1.9 times higher than that of the Rankine Cycle system, at the same border conditions. The investment cost per unit of power output for this cycle is lower than that for the Rankine Cycle system in approximately direct proportion to the energy advantage. The application of this cycle as a bottoming cycle in combined-cycle systems involves the use of an energy system which utilizes heat from the exhaust of a gas turbine, resulting in an increase in overall efficiency of up to 20 percent above the efficiency of the combined systems using the Rankine bottoming cycle. As a result, a thermal efficiency in the range of 50–52 percent can be achieved using a conventional gas turbine. The project to build the first experimental installation is now in progress. This installation is to become operational at the end of 1984.

Author(s):  
I K Smith

The world market for systems for power recovery from low-grade heat sources is of the order of £1 billion per annum. Many of these sources are hot liquids or gases from which conventional power systems convert less than 2.5 per cent of the available heat into useful power when the fluid is initially at a temperature of 100° C rising to 8–9 per cent at an initial temperature of 200°C. Consideration of the maximum work recoverable from such single-phase heat sources leads to the concept of an ideal trilateral cycle as the optimum means of power recovery. The trilateral flash cycle (TFC) system is one means of approaching this ideal which involves liquid heating only and two-phase expansion of vapour. Previous work related to this is reviewed and details of analytical studies are given which compare such a system with various types of simple Rankine cycle. It is shown that provided two-phase expanders can be made to attain adiabatic efficiencies of more than 75 per cent, the TFC system can produce outputs of up to 80 per cent more than simple Rankine cycle systems in the recovery of power from hot liquid streams in the 100–200°C temperature range. The estimated cost per unit net output is approximately equal to that of Rankine cycle systems. The preferred working fluids for TFC power plants are light hydrocarbons.


Author(s):  
Alexander I. Kalina

A new thermodynamic energy cycle has been developed, using a multicomponent working agent. Condensation is supplemented with absorption, following expansion in the turbine. Several combined power systems based on this cycle have been designed and cost-estimated. Efficiencies of these new systems are 1.35 to 1.5 times higher than the best Rankine Cycle system, at the same border conditions. Investment cost per unit of power output is about two-thirds of the cost of a comparable Rankine Cycle system. Results make cogeneration economically attractive at current energy prices. The first experimental installation is planned by Fayette Manufacturing Company and Detroit Diesel Allison Division of General Motors.


Author(s):  
H. S. Bloomfield

The potential benefits of solar/fossil hybrid gas turbine power systems were assessed. Both retrofit and new systems were considered from the aspects of: cost of electricity, fuel conservation, operational mode, technology requirements, and fuels flexibility. Hybrid retrofit (repowering) of existing combustion (simple Brayton cycle) turbines can provide near-term fuel savings and solar experience, while new and advanced recuperated or combined-cycle systems may be an attractive fuel saving and economically competitive vehicle to transition from today’s gas- and oil-fired powerplants to other more abundant fuels.


Solar Energy ◽  
2002 ◽  
Author(s):  
Ju¨rgen Dersch ◽  
Michael Geyer ◽  
Ulf Hermann ◽  
Scott A. Jones ◽  
Bruce Kelly ◽  
...  

Parabolic trough solar technology has over 125 plant-years of successful operation at nine commercial Solar Electric Generating Systems (SEGS) power plants that are operating near Barstow, California. These solar plants utilize conventional steam Rankine turbine-generator systems, and as a result most people associate parabolic trough solar technology with steam Rankine cycle power plants. Although these plants are clearly optimized for their particular application, other power cycle designs may be appropriate in other situations. Of particular interest is the integration of parabolic trough solar technology with combined cycle power plant technology, a configuration called the integrated solar combined cycle system (ISCCS). Four potential projects in India, Egypt, Morocco, and Mexico are considering the ISSCS configuration. This paper compares the performance, cost, and carbon emissions of ISCCS and SEGS plants with a standard combined cycle plant.


2021 ◽  
Vol 11 (23) ◽  
pp. 11554
Author(s):  
Ali Baghernejad ◽  
Amjad Anvari-Moghaddam

Combined cycle systems have an important role in power generation. In the present study, three different configurations of combined Brayton and Rankine cycle system are studied from the perspective of energy, exergy, exergoeconomic and environmental perspectives. Results indicate that it depends on the preferences and criteria of each decision maker to select the best configuration among the three proposed configurations as the final configuration. For the purpose of parametric analysis, the effect of changing various parameters such as compressor pressure ratio, gas turbine inlet temperature on the output work, exergy efficiency, exergy-economic and environmental parameters is studied. In addition, an attempt is made to optimize the performance of combined cycle systems considering three objective functions of exergy efficiency, total cost rate and exergy unit cost of produced electricity.


2016 ◽  
Vol 64 ◽  
pp. 790-805 ◽  
Author(s):  
Huixing Zhai ◽  
Qingsong An ◽  
Lin Shi ◽  
Vincent Lemort ◽  
Sylvain Quoilin

Author(s):  
Alberto Vannoni ◽  
Andrea Giugno ◽  
Alessandro Sorce

Abstract Renewable energy penetration is growing, due to the target of greenhouse-gas-emission reduction, even though fossil fuel-based technologies are still necessary in the current energy market scenario to provide reliable back-up power to stabilize the grid. Nevertheless, currently, an investment in such a kind of power plant might not be profitable enough, since some energy policies have led to a general decrease of both the average price of electricity and its variability; moreover, in several countries negative prices are reached on some sunny or windy days. Within this context, Combined Heat and Power systems appear not just as a fuel-efficient way to fulfill local thermal demand, but also as a sustainable way to maintain installed capacity able to support electricity grid reliability. Innovative solutions to increase both the efficiency and flexibility of those power plants, as well as careful evaluations of the economic context, are essential to ensure the sustainability of the economic investment in a fast-paced changing energy field. This study aims to evaluate the economic viability and environmental impact of an integrated solution of a cogenerative combined cycle gas turbine power plant with a flue gas condensing heat pump. Considering capital expenditure, heat demand, electricity price and its fluctuations during the whole system life, the sustainability of the investment is evaluated taking into account the uncertainties of economic scenarios and benchmarked against the integration of a cogenerative combined cycle gas turbine power plant with a Heat-Only Boiler.


Sign in / Sign up

Export Citation Format

Share Document