Numerical Analysis of Heat and Mass Transfer From Fluid Spheres in an Electric Field

1986 ◽  
Vol 108 (2) ◽  
pp. 337-342 ◽  
Author(s):  
L. Sharpe ◽  
F. A. Morrison

Steady-state heat or mass transfer to a drop in an electric field at low values of the Reynolds number is investigated. The energy equation is solved using finite difference techniques; upwind differencing is used in approximating the convective terms. Far from the sphere, a “transmitting” boundary condition is introduced; the dimensionless temperature is held at zero for inward radial flow and the dimensionless temperature gradient is held at zero for outward radial flow at a fixed distance from the sphere’s surface. Numerical solutions are obtained using an iterative method. Creeping flow heat transfer results are obtained for Peclet numbers up to 103.

Volume 3 ◽  
2004 ◽  
Author(s):  
Tov Elperin ◽  
Andrew Fominykh ◽  
Zakhar Orenbakh

In this study we considered mass transfer in a binary system comprising a stationary fluid dielectric sphere embedded into an immiscible dielectric liquid under the influence of an alternating electric field. Fluid sphere is assumed to be solvent-saturated so that an internal resistance to mass transfer can be neglected. Mass flux is directed from a fluid sphere to a host medium, and the applied electric field causes a creeping flow around the sphere. Droplet deformation under the influence of the electric field is neglected. The problem is solved in the approximations of a thin concentration boundary layer and finite dilution of a solute in the solvent. The thermodynamic parameters of a system are assumed constant. The nonlinear partial parabolic differential equation of convective diffusion is solved by means of a generalized similarity transformation, and the solution is obtained in a closed analytical form for all frequencies of the applied electric field. The rates of mass transfer are calculated for both directions of fluid motion — from the poles to equator and from the equator to the poles. Numerical calculations show essential (by a factor of 2–3) enhancement of the rate of mass transfer in water droplet–benzonitrile and droplet of carbontetrachloride–glycerol systems under the influence of electric field for a stagnant droplet. The asymptotics of the obtained solutions are discussed.


2019 ◽  
Vol 8 (3) ◽  
pp. 7609-7620

The reason of this study is to find a numerical solutions of Jeffrey's compact, non-stressed, smooth, conductive, magnetic hall currents in the vertical optical direction in the occurrence of heat_flux, “heat”(h) & group transmit. The limited dissimilarity is solved to explain the “equations”(Eq). The effect of different constraints on “velocity”(V), “temperature”(temp) & concentration distributions was investigated at the boundary layer. Also, there is a computational discussion about the effect of relevant or important factors on the coefficients of skin_friction and the rate of h and “mass”(m) relocate according to the values of Nusselt and Sherwood information correspondingly. Great interconnection is achieved by using Perturbation and Finite difference techniques. Applications of magnetic materials, MHD generators and crude oil refinements have been found in this model.


Author(s):  
Falana Ayodeji ◽  
Babatope O. Pele ◽  
Abubakar A. Alao

This investigation deals with a comparison of suction/injection effect on flow, heat and mass transfer in porous media using a combined similarity-numerical solution. With this method of transformation, the governing transport PDEs are transformed into ODE and then solved numerically. The study reveals that suction/injection effect is more pronounce on the velocity distribution of a creeping flow (Darcy flow). The Darcy-Forchheimer flow has the steepest velocity curves due to non-linearity and has higher skin friction, heat and mass transfer rate when compared to the other porous media investigated.


2018 ◽  
Vol 28 ◽  
pp. 33-46 ◽  
Author(s):  
K. Avinash ◽  
R. Hemadri Reddy ◽  
Anselm Onyekachukwu Oyem

A study on the thermophoresis and Brownian moment effects on magnetohydrodynamic flow of dissipative Casson fluid over a stretching sheet is considered. The governing equations of the flow, heat and mass transfer is transformed to ordinary differential equations by using similarity transformation. Numerical solutions of these equations are obtained by using shooting technique. The influence of pertinent parameters on the velocity, temperature and concentration profiles along with friction factor, local Nusselt and Sherwood numbers are discussed and presented through graphs and tables. It is found that the heat and mass transfer rate is high in steady flow when compared to unsteady flow.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wasim Jamshed ◽  
Mohamed R. Eid ◽  
Kottakkaran Sooppy Nisar ◽  
Nor Ain Azeany Mohd Nasir ◽  
Abhilash Edacherian ◽  
...  

AbstractThe current investigation aims to examine heat transfer as well as entropy generation analysis of Powell-Eyring nanofluid moving over a linearly expandable non-uniform medium. The nanofluid is investigated in terms of heat transport properties subjected to a convectively heated slippery surface. The effect of a magnetic field, porous medium, radiative flux, nanoparticle shapes, viscous dissipative flow, heat source, and Joule heating are also included in this analysis. The modeled equations regarding flow phenomenon are presented in the form of partial-differential equations (PDEs). Keller-box technique is utilized to detect the numerical solutions of modeled equations transformed into ordinary-differential equations (ODEs) via suitable similarity conversions. Two different nanofluids, Copper-methanol (Cu-MeOH) as well as Graphene oxide-methanol (GO-MeOH) have been taken for our study. Substantial results in terms of sundry variables against heat, frictional force, Nusselt number, and entropy production are elaborate graphically. This work’s noteworthy conclusion is that the thermal conductivity in Powell-Eyring phenomena steadily increases in contrast to classical liquid. The system’s entropy escalates in the case of volume fraction of nanoparticles, material parameters, and thermal radiation. The shape factor is more significant and it has a very clear effect on entropy rate in the case of GO-MeOH nanofluid than Cu-MeOH nanofluid.


Sign in / Sign up

Export Citation Format

Share Document