Vortex-Shedding Response of Long Cylindrical Structures in Shear Flow

1988 ◽  
Vol 110 (1) ◽  
pp. 24-31 ◽  
Author(s):  
E. Wang ◽  
A. K. Whitney ◽  
K. G. Nikkel

The response of cylindrical structures to vortex shedding in a vertically sheared cross flow is analyzed. In contrast to the uniform cross-flow case, shear flow can excite more than one modal frequency at a time. Thus, the net response of the structure is a superposition of several vibration modes. The amplitude of each mode is determined by a balance between energy fed into the structure over a “locked-on” region of the structure and energy dissipated by fluid damping over the remainder of the structure. A solution method based on random vibration analysis is developed that uses an empirically derived lift coefficient and correlation length models. The technique is capable of handling both uniform and sheared (depth-varying) current profiles. Good quantitative agreement is found between the present method and the very limited field data available for shear flows, although it is concluded that the shear conditions in the tests were not sufficiently strong to validate the theory conclusively. The results show how using uniform-flow approximations to treat shear flow cases can significantly overpredict vibration amplitudes caused by vortex shedding.

2011 ◽  
Vol 677 ◽  
pp. 342-382 ◽  
Author(s):  
REMI BOURGUET ◽  
GEORGE E. KARNIADAKIS ◽  
MICHAEL S. TRIANTAFYLLOU

We investigate the in-line and cross-flow vortex-induced vibrations of a long cylindrical tensioned beam, with length to diameter ratio L/D = 200, placed within a linearly sheared oncoming flow, using three-dimensional direct numerical simulation. The study is conducted at three Reynolds numbers, from 110 to 1100 based on maximum velocity, so as to include the transition to turbulence in the wake. The selected tension and bending stiffness lead to high-wavenumber vibrations, similar to those encountered in long ocean structures. The resulting vortex-induced vibrations consist of a mixture of standing and travelling wave patterns in both the in-line and cross-flow directions; the travelling wave component is preferentially oriented from high to low velocity regions. The in-line and cross-flow vibrations have a frequency ratio approximately equal to 2. Lock-in, the phenomenon of self-excited vibrations accompanied by synchronization between the vortex shedding and cross-flow vibration frequencies, occurs in the high-velocity region, extending across 30% or more of the beam length. The occurrence of lock-in disrupts the spanwise regularity of the cellular patterns observed in the wake of stationary cylinders in shear flow. The wake exhibits an oblique vortex shedding pattern, inclined in the direction of the travelling wave component of the cylinder vibrations. Vortex splittings occur between spanwise cells of constant vortex shedding frequency. The flow excites the cylinder under the lock-in condition with a preferential in-line versus cross-flow motion phase difference corresponding to counter-clockwise, figure-eight orbits; but it damps cylinder vibrations in the non-lock-in region. Both mono-frequency and multi-frequency responses may be excited. In the case of multi-frequency response and within the lock-in region, the wake can lock in to different frequencies at various spanwise locations; however, lock-in is a locally mono-frequency event, and hence the flow supplies energy to the structure mainly at the local lock-in frequency.


1981 ◽  
Vol 103 (2) ◽  
pp. 130-135 ◽  
Author(s):  
S. S. Chen ◽  
J. A. Jendrzejczyk

Experiments are conducted to determine the damping for a tube in tube arrays subjected to liquid cross-flow; damping factors in the lift and drag directions are measured for in-line and staggered arrays. It is found that: 1) fluid damping is not a constant, but a function of flow velocity; 2) damping factors in the lift and drag directions are different; 3) fluid damping depends on the tube location in an array; 4) flow velocity-dependent damping is coupled with vortex shedding process and fluid-elastic instability; and 5) flow velocity-dependent damping may be negative. This study demonstrates that flow velocity-dependent damping is important. These characteristics should be properly taken into account in the mathematical modeling of tube arrays subjected to cross-flow.


2011 ◽  
Vol 255-260 ◽  
pp. 942-946
Author(s):  
Hua Bai ◽  
Jia Wu Li

The hydrodynamic characteristics of a circular cylinder in two-dimensional unsteady uniform cross flow was simulated numerically by the laminar model with the reasonable mesh used the method of fluent. The focus of this numerical simulation was to research the characteristics of pressure distribution, drag coefficient and lift coefficient, and the Strouhal number was calculated at Reynolds-numbers value of 200. The results agree well with experimental data and other numerical results according to the reference. In order to study the control measures of the flow over a circular cylinder, the different baffles inserted at various locations downstream of the cylinder have been compared. The results shows that the vortex shedding of flow over a circular cylinder could be well controlled by place the baffle at a right position of the downstream medial axis of the cylinder, which could reduce drag and resist vibration.


Author(s):  
O. O. Akosile ◽  
D. Sumner

Two circular cylinders of equal diameter, arranged in staggered configurations of P/D = 1.125 and 1.25, were immersed in a uniform planar shear flow, at Re = 5.0×104 and a dimensionless shear parameter of K = 0.05. The mean aerodynamic forces and the vortex shedding frequencies were measured for the upstream and downstream cylinders at each P/D. Under uniform, no-shear flow conditions, K = 0, the flow field of the cylinder group is similar to a single bluff body. As the incidence angle is varied from α = 0° to 90°, the forces on each cylinder undergo discontinuous changes, or attain local minimum or maximum values, at several critical incidence angles. At small α, the Strouhal number is greater than that of a single, isolated circular cylinder, whereas at high α the Strouhal number is lower than the single-cylinder value. The effects of shear, K = 0.05, on the aerodynamic forces were different depending on whether the downstream cylinder was situated at a higher or lower centreline velocity compared to the upstream cylinder. The planar shear flow had its greatest influence when the cylinders were in a nearly side-by-side arrangement. This indicated that the effect of shear was mostly on the flow through the gap between the cylinders. The lift coefficient data were mostly unchanged by the shear flow, the drag coefficient data were lowered, and there were shifts in the critical incidence angles. The influence of shear on vortex shedding was less pronounced, but there was a small reduction in Strouhal number compared to the no-shear case.


1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


1995 ◽  
Vol 287 ◽  
pp. 151-171 ◽  
Author(s):  
Hiroshi Sakamoto ◽  
Hiroyuki Haniu

Experiments to investigate the formation mechanism and frequency of vortex shedding from a sphere in uniform shear flow were conducted in a water channel using flow visualization and velocity measurement. The Reynolds number, defined in terms of the sphere diameter and approach velocity at its centre, ranged from 200 to 3000. The shear parameter K, defined as the transverse velocity gradient of the shear flow non-dimensionalized by the above two parameters, was varied from 0 to 0.25. The critical Reynolds number beyond which vortex shedding from the sphere occurred was found to be lower than that for uniform flow and decreased approximately linearly with increasing shear parameter. Also, the Strouhal number of the hairpin-shaped vortex loops became larger than that for uniform flow and increased as the shear parameter increased.The formation mechanism and the structure of vortex shedding were examined on the basis of series of photographs and subsequent image processing using computer graphics. The range of Reynolds number in the present investigation, extending up to 3000, could be classified into three regions on the basis of this study, and it was observed that the wake configuration did not differ substantially from that for uniform flow. Also, unlike the detachment point of vortex loops in uniform flow, which was irregularly located along the circumference of the sphere, the detachment point in shear flow was always on the high-velocity side.


Author(s):  
Remi Bourguet ◽  
Michael S. Triantafyllou ◽  
Michael Tognarelli ◽  
Pierre Beynet

The fluid-structure energy transfer of a tensioned beam of length to diameter ratio 200, subject to vortex-induced vibrations in linear shear flow, is investigated by means of direct numerical simulation at three Reynolds numbers, from 110 to 1,100. In both the in-line and cross-flow directions, the high-wavenumber structural responses are characterized by mixed standing-traveling wave patterns. The spanwise zones where the flow provides energy to excite the structural vibrations are located mainly within the region of high current where the lock-in condition is established, i.e. where vortex shedding and cross-flow vibration frequencies coincide. However, the energy input is not uniform across the entire lock-in region. This can be related to observed changes from counterclockwise to clockwise structural orbits. The energy transfer is also impacted by the possible occurrence of multi-frequency vibrations.


Sign in / Sign up

Export Citation Format

Share Document