A Semi-Quantitative Method for Thin Film Adhesion Measurement

1985 ◽  
Vol 107 (4) ◽  
pp. 472-477 ◽  
Author(s):  
Bond-Yen Ting ◽  
W. O. Winer ◽  
S. Ramalingam

Film deposition techniques are used in several applications. In tribology, wear and friction can be changed significantly by depositing a thin film on the contacting surfaces. A vital factor for this application is the adhesion between the film and the substrate. Due to high contact stresses in many tribological applications, high adhesion is required. Measurement of adhesion is therefore important if coated elements are to be used with confidence. A method has been developed for the measurement of adhesion which uses a composite model. This method is presented in this paper. A one-dimensional elastic analysis is sufficient to determine adhesion strength. In this method an interfacial shear stress is generated at the film-to-substrate interface by imposing a strain difference between the film and substrate. This interfacial shear stress is used to evaluate film adhesion. If the film-substrate adhesion is less than the shear stress applied to the interface the film will debond; otherwise, it will remain adhered to the substrate. The analysis developed yields a quantitative expression for the interfacial shear strength. Therefore the adhesion can be quantitatively determined.

1991 ◽  
Vol 239 ◽  
Author(s):  
H. S. Jeong ◽  
Y. Z. Chu ◽  
M. B. Freiler ◽  
C. Durning ◽  
R. C. White

ABSTRACTFracture energy (Ga) of BPDA-PDA polyimide (PI) on modified and unmodified Si surfaces was measured by the “blister” test as a function of final cure temperature. It is proven quantitatively that surface modification prior to thin film deposition enhances adhesion. Metal adhesion to PI was also measured by the same method. Reproducibility of the data was found to be exceptionally good for both cases. The linear elastic model is quite valid for the test of thin film adhesion. Therefore, it is believed that this test is best suited for Ga measurements in the study of thin film adhesion for microelectronic packaging.


2013 ◽  
Vol 652-654 ◽  
pp. 1856-1861 ◽  
Author(s):  
An Shun He ◽  
Han Huang

The failure characteristics of silicon nitride thin film deposited on GaAs substrate were investigated by use of nanoscratch. It was found that the film started to failvia delamination or buckling, which should beattributed to interfacial shear stress. The cracks were then formed and propagated around the edge of the delaminated film before it was chipped away by the moving tip. A normal load of 6.5 mN, corresponding to a depth of 150 nm, was found to be the critical threshold for theinterfacial failure. The fracture energy release rateof the film/substrate interface, or the work of adhesion, was calculated as 2.90 J/m2.


2012 ◽  
Vol 190-191 ◽  
pp. 487-490 ◽  
Author(s):  
Ban Quan Yang ◽  
Xue Jun Chen ◽  
Wei Hai Sun ◽  
Hong Qian Chen ◽  
Jing Wen Pan ◽  
...  

The fracture behavior of a brittle thin film on an elastic substrate under residual stress and uniaxial tensile loading is investigated. It is assumed that the residual stress in the thin film is not large enough to cause the thin film to fracture. Using a mechanical model presented in this work, the analytical solutions for the distribution laws of the tensile stress developed in the thin film, the shear stress developed along the interface and the relationship between the crack density of the thin film and the applied strain of the substrate can be obtained. The results presented in this work can provide a new analytic solution to the interfacial shear stress for characterizing the interfacial shear strength of the thin film/substrate system when the uniaxial tensile test is adopted to evaluate the mechanical properties of the thin film/substrate system.


1988 ◽  
Vol 129 ◽  
Author(s):  
P. A. Ingemarsson ◽  
T. Ericsson ◽  
G. Possnert ◽  
R. Wappling

ABSTRACTConversion electron M6ssbauer spectroscopy was used as a means of investigating radiation induced changes at thin film interfaces. 25 Å thick layers of 57Fe were evaporated onto substrates of Si,SiO2 and A12O3 andcovered with 150 Å 56Fe. Samples were then subjected to ion irradiation with 20 MeV C14+ to doses ranging from 1012 to 2x 1014 ions/cm2 and subsequently annealed in vacuum at 450 ºC. Mössbauer spectra were recorded before and after each step. The analysis revealed chemical alterations, induced by the ion bombardment, indicative of film-substrate bond formation and reconstruction of residual surface hydrocarbons. The results are interpreted in view of accompanying enhancements in thin film adhesion.


2013 ◽  
Vol 554-557 ◽  
pp. 1738-1750 ◽  
Author(s):  
Hua Gui Zhang ◽  
Khalid Lamnawar ◽  
Abderrahim Maazouz

This work aims to highlight the importance of interphase triggered from interdiffusion at neighboring layers on controlling the interfacial flow instability of multilayer coextrusion based on a compatible bilayer system consist of poly(methyl methacrylate) (PMMA) and poly(vinylidene fluoride) (PVDF) melt streams. A fundamental rheological measurement on the bilayer structures provides a good strategy to probe the mutual diffusion process occurred at neighboring layers and to quantify the rheology and thickness of the interphase generated thereof. By implementing steady shear measurements on the multilayer’s, subtle interfacial slippage can be observed at a condition of short welding time and rather high shear rate due to the disentanglement of chains at the interphase. Pre-shear at an early stage on the multilayer was found to greatly promote the homogenizing process by inducing branched structures and hence increasing interfacial area. In coextrusion, some key classical decisive parameters concerning the interfacial instability phenomena such as viscosity ratio, thickness ratio and elasticity ratio, etc. were highlighted. These key factors that are significant in controlling the interfacial stability of coextrusion in an incompatible system seem not that important in a compatible system. In comparison to the severe flow instability observed in the coextrusion of PMMA/PE incompatible bilayer, the coextrusion of PMMA/PVDF compatible bilayer appears to be smooth without apparent interfacial flow instability due to the presence of the interphase. Interdiffusion can reduce (even eliminate) the interfacial flow instability of coextrusion despite of the very high viscosity ratio of PVDF versus PMMA at low temperatures. Indeed, in the coextrusion process, on one hand, the interdiffusion should be studied by taking into account of the effect of polymer chain orientation which was demonstrated to decelerate the diffusion coefficient. On the other hand, the interfacial shear stress was able to promote mixing and homogenizing process at the interface, which favours the development of the interphase and guarantees the stable interfacial flow. The degree of the interphase is related to a lot of parameters like contact time, processing temperature, interfacial shear stress and compatibility of the polymers, etc. Therefore, apart from the classical mechanical parameters, the interphase created from the interdiffusion should be taken into consideration as an important factor on determining the interfacial instability phenomena. References [1] H. Zhang, K. Lamnawar, A. Maazouz, Rheological modeling of the diffusion process and the interphase of symmetrical bilayers based on PVDF and PMMA with varying molecular weights. Rheol. Acta 51 (2012) 691-711 [2] H. Zhang, K. Lamnawar, A. Maazouz, Rheological modeling of the mutual diffusion and the interphase development for an asymmetrical bilayer based on PMMA and PVDF model compatible polymers, Macromolecules (2012), Doi: http://dx.doi.org/10.1021/ma301620a [3] H. Zhang, K. Lamnawar, A. Maazouz, Role of the interphase in the interfacial flow stability of multilayer coextrusion based on PMMA and PVDF compatible polymers, to be submitted. [4] K. Lamnawar, A. Maazouz, Role of the interphase in the flow stability of reactive coextruded multilayer polymers, Polymer Engineering & Science, 49, (2009), 727 - 739 [5] K. Lamnawar, H. Zhang, A. Maazouz, one chapter” State of the art in co-extrusion of multilayer polymers: experimental and fundamental approaches” in Encyclopedia of Polymer Science and Technology (wiley library) (feature article)


Sign in / Sign up

Export Citation Format

Share Document