Thermal Effects in Dynamically Loaded Flexible Journal Bearings

1989 ◽  
Vol 111 (1) ◽  
pp. 49-55 ◽  
Author(s):  
H. Moes ◽  
P. B. Y. Ten Hoeve ◽  
J. Van der Helm

A method of taking into account the thermal effects when simulating dynamically loaded, flexible, journal bearings on a computer will be introduced. The method is an extension of Van der Tempel’s model for a flexible, short journal bearing under severe dynamic duty, with partial circumferential supply grooves, cavitation and cavitation induced starvation. It incorporates the heat generation due to the viscous dissipation and the cooling due to the axial and circumferential flow of lubricant. The results for the film thicknesses, the lubricant flow, the viscous dissipation and the temperature distribution in two specific connecting-rod bearing configurations will be presented.

1990 ◽  
Vol 112 (2) ◽  
pp. 224-229 ◽  
Author(s):  
G. Gupta ◽  
C. R. Hammond ◽  
A. Z. Szeri

The aim of this paper is to make available to the industrial designer results of the thermohydrodynamic theory of journal bearings, by providing a simplified, yet accurate model of journal bearing lubrication that can be implemented on a personal computer and be used in an interactive mode. The simplified THD theory we propose consists of two coupled ordinary differential equations for pressure and energy and an algebraic equation for viscosity, which are to be solved iteratively. Bearing load capacity, maximum bearing temperature, maximum pressure, coefficient of friction and lubricant flow rate calculated from this simplified theory compare well with results from a more sophisticated model. We also make comparisons with experimental data on full journal bearings, demonstrating substantial agreement between experiment and simplified theory.


Author(s):  
S. Strzelecki ◽  
Z. Towarek

The design of turbines and compressors operating at the high rotational speeds applies the 3-lobe journal bearings. In many cases the classic 3-lobe journal bearings supporting the rotors, are showing the problem of rotor stability. This problem can be avoided by the application of 3-lobe Offset bearings. This type of bearing fulfils the conditions of reliable bearing design and good stability in the case of high speed rotating machines.


Author(s):  
H Hirani ◽  
K Athre ◽  
S Biswas

An approximate analytical pressure expression for dynamically loaded journal bearings is proposed. This approximation is applied to the solution of the finite journal bearing with a π-extent film. The starting and ending angular positions of the pressure curve are predicted by simple algebraic equations. The journal orbit is determined by treating it as an ‘inverse problem’ and evaluated by using the globally convergent Newton-Raphson method. To illustrate the validity of the present study, the Ruston and Hornsby big-end connecting rod bearing and an engine main bearing are analysed. The accuracy of the minimum film thickness and maximum film pressure values obtained by the proposed methodology is comparable to the more elaborate and time consuming finite element analysis, while the execution time is comparable to that required for the short bearing approximation.


2010 ◽  
Vol 297-301 ◽  
pp. 618-623 ◽  
Author(s):  
S. Boubendir ◽  
Salah Larbi ◽  
Rachid Bennacer

In this work the influence of thermal effects on the performance of a finite porous journal bearing has been investigated using a thermo-hydrodynamic analysis. The Reynolds equation of thin viscous films is modified taking into account the oil leakage into the porous matrix, by applying Darcy’s law to determine the fluid flow in the porous media. The governing equations were solved numerically using the finite difference approach. Obtained result show a reduction in the performance of journal bearings when the thermal effects are accounted for and, this reduction is greater when the load capacity is significant.


2004 ◽  
Vol 127 (3) ◽  
pp. 493-498 ◽  
Author(s):  
B. J. Alshaer ◽  
H. Nagarajan ◽  
H. K. Beheshti ◽  
H. M. Lankarani ◽  
S. Shivaswamy

Clearances exist in different kinds of joints in multibody mechanical systems, which could drastically affect the dynamic behavior of the system. If the joint is dry with no lubricant, impact occurs, resulting in wear and tear of the joint. In practical engineering design of machines, joints are usually designed to operate with some lubricant. Lubricated journal bearings are designed so that even when the maximum load is applied, the joint surfaces do not come into contact with each other. In this paper, a general methodology for modeling lubricated long journal bearings in multibody mechanical systems is presented. This modeling utilizes a method of solving for the forces produced by the lubricant in a dynamically loaded long journal bearing. A perfect revolute joint in a multibody mechanical system imposes kinematic constraints, while a lubricated journal bearing joint imposes force constraints. As an application, the dynamic response of a slider-crank mechanism including a lubricated journal bearing joint between the connecting rod and the slider is considered and analyzed. The dynamic response is obtained by numerically solving the constraint equations and the forces produced by the lubricant simultaneously with the differential equations of motion and a set of initial conditions numerically. The results are compared with the previous studies performed on the same mechanism as well a dry clearance joint. It is shown that in a multibody mechanical system, the journal bearing lubricant introduces damping and stiffness to the system. The earlier studies predict that the order of magnitude of the reaction moment is twice that of a perfect revolute joint. The proposed model predicts that the reaction moment is within the same order of magnitude of the perfect joint simulation case.


2010 ◽  
Vol 97-101 ◽  
pp. 3781-3784
Author(s):  
Jian Ping Yuan ◽  
Zhi Xia He ◽  
Qian Wang ◽  
Ju Yan Liu

The Reynolds equation and energy equation with the thermal balance equation in combination were applied to build the thermohydrodynamic (THD) computational model of the dynamically loaded journal bearings. The most popular development platform——Visual C ++ in the field of computer science and the drawing platform of AutoCAD were combined with the medium of ObjectARX and the object oriented programming technology was used, on the basis of which, the visual computational software of the THD lubrication of the dynamically loaded journal bearings for main shaft and connecting rod bearings of automobile engines was developed. The analysis results of an example indicate that the bearing behaviors are closely tied to the radial clearances and inlet lubricant temperature of the bearing.


Author(s):  
B. J. Alshaer ◽  
H. M. Lankarani ◽  
S. Shivaswamy

Abstract Clearances exist in different kinds of joints in multibody mechanical systems, which could drastically affect the dynamic behavior of the system. If the joint is dry with no lubricant, impact occurs, resulting in wear and tear of the joint. In practical engineering design of machines, joints are usually designed to operate with some lubricant. Lubricated journal bearings are designed so that even when the maximum load is applied, the joint surfaces do not come into contact with each other. In this paper, a general methodology for modeling lubricated long journal bearings in multibody mechanical systems is presented. This modeling utilizes a new method of solving for the forces produced by the lubricant in a dynamically loaded long journal bearing. A perfect revolute joint in a multibody mechanical system imposes kinematic constraints, while a lubricated journal bearing joint imposes force constraints. As an application, the dynamic response of a crank-slider mechanism including a lubricated journal bearing joint between the connecting rod and the slider is considered and analyzed. The dynamic response is obtained by numerically solving the constraint equations and the forces produced by the lubricant simultaneously with the differential equations of motion and a set of initial conditions numerically. The results are compared with the previous studies performed on the same mechanism as well a dry clearance joint. It is shown that in a multibody mechanical system, the journal bearing lubricant introduces damping and stiffness to the system. The earlier studies previous predict that the order of magnitude of the reaction moment is twice that of a perfect revolute joint. The proposed model predicts that the reaction moment is within the same order of magnitude of the perfect joint simulation case.


1999 ◽  
Vol 121 (4) ◽  
pp. 844-852 ◽  
Author(s):  
H. Hirani ◽  
K. Athre ◽  
S. Biswas

A closed-form pressure distribution, using a combination of short- and long-bearing approximations, is proposed for dynamically loaded journal bearings. The angles for start and finish of positive pressure curve are determined employing simple analytical equations. The mobility method, based on the suggested pressure distribution is easy to use, predicts results of acceptable accuracy and the execution time is comparable to that required for the short bearing approximation. This paper also provides a conceptually simple analytical method for evaluating angular location of the instantaneous maximum pressure using proposed closed form pressure distribution. Simple algebraic equations are derived to obtain the instantaneous maximum pressure in dynamically loaded bearings directly, without involving any iteration. To illustrate the validity of present study, a connecting rod big end bearing and two crankshaft main bearings are analyzed. The mobility components, minimum film thickness and maximum pressure are plotted over a load cycle and compared with established analytical and curve fit methods. The results are also compared with those obtained using finite element method.


1981 ◽  
Vol 23 (1) ◽  
pp. 37-44
Author(s):  
C. Singh ◽  
P. Sinha

Dynamically loaded bearings in which the load alternates or rotates are studied in this paper. The Reynolds equation for the general case of a dynamically loaded infinitely short bearing is derived, where the lubricant is assumed to be micropolar. Detailed consideration is given to the dynamic behaviour of squeeze films in a short journal bearing under a sinusoidal load with no journal rotation. Various bearing characteristics are calculated, assuming a full film to exist. The micropolarity of the fluid results in more resistance to journal motion, thereby allowing smaller eccentricities for a constant load. The overall conclusion of this study is an increase in the effective viscosity due to the micropolarity of the lubricant. This theory may find application in lubrication when additives are used.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Suresh Verma ◽  
Vijay Kumar ◽  
K. D. Gupta

This paper presents a theoretical study of the performance characteristics of a constant flow valve compensated multirecess hydrostatic journal bearings operating with micropolar lubricant. The finite element method and iterative procedure have been used to solve the modified Reynolds equation governing the micropolar lubricant flow in the bearing. The performance characteristics are presented for a wide range of nondimensional load, lubricant flow, and micropolar parameters. It has been observed that the micropolar parameters significantly influence the performance characteristics of the bearing.


Sign in / Sign up

Export Citation Format

Share Document