The Aerodynamic Development of a Highly Loaded Nozzle Guide Vane

1986 ◽  
Vol 108 (2) ◽  
pp. 261-268 ◽  
Author(s):  
N. C. Baines ◽  
M. L. G. Oldfield ◽  
J. P. Simons ◽  
J. M. Wright

A series of high-pressure turbine nozzle guide vanes has been designed for progressively increasing blade loading and reduction in blade solidity without additional loss penalty. Early members of the series achieved this by changes to the suction surface contour, but for the latest design the pressure surface contour was extensively modified to reduce the velocities on this surface substantially. Cascade testing revealed that this vane had a higher loss than its predecessor, and this appears to be largely due to a long region of boundary layer growth on the suction surface and possibly also an unsteady separation. These tests demonstrated the value of a flattened pitot tube held against the blade surface in determining the boundary layer state. By using a pitot probe of only modest frequency response (of order 100 Hz) it was possible to observe significant qualitative differences in the raw signals from laminar, transitional and turbulent boundary layers, which have previously been observed only with much higher frequency instruments. The test results include a comparison of boundary layer measurements on the same cascade test section in two different high-speed wind tunnels. This comparison suggests that freestream turbulence can have a large effect on boundary layer development and growth.

Author(s):  
N. C. Baines ◽  
M. L. G. Oldfield ◽  
J. P. Simons ◽  
J. M. Wright

A series of high pressure turbine nozzle guide vanes has been designed for progressively increasing blade loading and reduction in blade solidity without additional loss penalty. Early members of the series achieved this by changes to the suction surface contour, but for the latest design the pressure surface contour was extensively modified to reduce the velocities on this surface substantially. Cascade testing revealed that this vane had a higher loss than its predecessor, and this appears to be largely due to a long region of boundary layer growth on the suction surface and possibly also an unsteady separation. These tests demonstrated the value of a flattened pitot tube held against the blade surface in determining the boundary layer state. By using a pitot probe of only modest frequency response (of order 100 Hz) it was possible to observe significant qualitiative differences in the raw signals from laminar, transitional and turbulent boundary layers, which have previously been observed only with much higher frequency instruments. The test results include a comparison of boundary layer measurements on the same cascade test section in two different high-speed wind tunnels. This comparison suggests that freestream turbulence can have a large effect on boundary layer development and growth.


Author(s):  
Mohammad A. Hossain ◽  
Ali Ameri ◽  
James W. Gregory ◽  
Jeffrey P. Bons

Abstract Experimental and numerical investigations were conducted to study the effects of high blowing ratios and high freestream turbulence on sweeping jet film cooling. Experiments were conducted on a nozzle guide vane suction surface in a low-speed linear cascade. Experiments were performed at blowing ratios of 0.5–3.5 and freestream turbulence of 0.6% and 14.3%. Infrared thermography was used to estimate the adiabatic cooling effectiveness. Thermal field and boundary layer measurement were conducted at a cross-plane (x/D = 12) downstream of the hole exit. Results were compared with a baseline 777-shaped hole and showed that sweeping jet hole has a better cooling performance at high blowing ratios. The Thermal field data revealed that the coolant separates from the surface at high blowing ratios for the 777-shaped hole while the coolant remains attached for the sweeping jet hole. Boundary layer measurement further confirmed that due to the sweeping action of the jet, the jet momentum of the sweeping jet hole is much lower than that of a 777-shaped hole. Thus the coolant remains closer to the wall even at high blowing ratios. Large Eddy Simulations (LES) were performed for both sweeping jet and the 777-shaped hole to evaluate the interaction between the coolant and the freestream at the near hole regions. Results showed that 777-shaped hole has a strong jetting action at high blowing ratio that originates inside the hole breakout edges thus causing the jet to blow off from the surface. In contrast, the sweeping jet hole does not show this behavior due to its internal geometry and the sweeping action of the jet.


Author(s):  
J. Yan ◽  
D. G. Gregory-Smith ◽  
P. J. Walker

A linear cascade of HP steam turbine nozzle guide vanes was designed and built in order to study the effect of a non-axisymmetric profile for the endwall. The profile was designed by using CFD for the purpose of reducing the secondary flow. The method was to use convex curvature near the pressure surface to reduce the static pressure and concave curvature near the suction surface to increase it. Thus the cross passage pressure gradient which drives the secondary flow would be reduced. Detailed investigations of the flow field with a flat end-wall and the profiled end-wall were conducted. The effect of the profiled end-wall on the secondary flow development was determined and also compared with the CFD design predictions. It was found that the secondary loss and secondary kinetic energy were both reduced by about 20% with the shaped endwall, and a more uniform exit flow was also achieved.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Kedar P. Nawathe ◽  
Rui Zhu ◽  
Enci Lin ◽  
Yong W. Kim ◽  
Terrence W. Simon

Abstract Effective coolant schemes are required for providing cooling to the first-stage stator vanes of gas turbines. To correctly predict coolant performance on the endwall and vane surfaces, these coolant schemes should also consider the effects of coolant streams introduced upstream in the combustor section of a gas turbine engine. This two-part paper presents measurements taken on a first-stage nozzle guide vane cascade that includes combustor coolant injection. The first part of this paper explains how coolant transport and coolant-mainstream interaction in the vane passage is affected by changing the combustor coolant and endwall film coolant flowrates. This paper explains how those flows affect the coolant effectiveness on the endwall and vane surfaces. Part one showed that a significant amount of coolant injected upstream of the endwall is present along the pressure surface of the vanes as well as over the endwall. Part two shows effectiveness measurement results taken in this study on the endwall and pressure and suction surfaces of the vanes. Sustained endwall coolant effectiveness is observed along the whole passage for all cases. It is uniform in the pitch-wise direction. Combustor coolant flow significantly affects cooling performance even near the trailing edge. The modified flowfield results in the pressure surface being cooled more effectively than the suction surface. While the effectiveness distribution on the pressure surface varies with combustor and film coolant flowrates, the distribution along the suction surface remains largely unchanged.


Author(s):  
Kedar P. Nawathe ◽  
Rui Zhu ◽  
Enci Lin ◽  
Yong W. Kim ◽  
Terrence W. Simon

Abstract Effective coolant schemes are required for providing cooling to the first stage stator vanes of gas turbines. To correctly predict coolant performance on the endwall and vane surfaces, these coolant schemes should also consider the effects of coolant streams introduced upstream in the combustor section of a gas turbine engine. This two-part paper presents measurements taken on a first-stage nozzle guide vane cascade that includes combustor coolant injection. The first part of this paper explains how coolant transport and coolant-mainstream interaction in the vane passage is affected by changing the combustor coolant and endwall film coolant flow rates. This paper explains how those flows affect the coolant effectiveness on the endwall. Part one showed that a significant amount of coolant injected upstream of the endwall is present along the pressure surface of the vanes as well as over the endwall. Part two shows effectiveness measurement results taken in this study on the endwall and pressure and suction surfaces of the vanes. Sustained endwall coolant effectiveness is observed along the whole passage for all cases. It is uniform in the pitch-wise direction. Combustor coolant flow significantly affects cooling performance even near the trailing edge. The modified flow field results in the pressure surface being cooled more effectively than the suction surface. While the effectiveness distribution on the pressure surface varies with combustor and film coolant flow rates, the suction surface remains largely unchanged.


Author(s):  
Sridharan Ramesh ◽  
Christopher LeBlanc ◽  
Diganta Narzary ◽  
Srinath Ekkad ◽  
Mary Anne Alvin

Film cooling performance of the antivortex (AV) hole has been well documented for a flat plate. The goal of this study is to evaluate the same over an airfoil at three different locations: leading edge suction and pressure surface and midchord suction surface. The airfoil is a scaled up first stage vane from GE E3 engine and is mounted on a low-speed linear cascade wind tunnel. Steady-state infrared (IR) technique was employed to measure the adiabatic film cooling effectiveness. The study has been divided into two parts: the initial part focuses on the performance of the antivortex tripod hole compared to the cylindrical (CY) hole on the leading edge. Effects of blowing ratio (BR) and density ratio (DR) on the performance of cooling holes are studied here. Results show that the tripod hole clearly provides higher film cooling effectiveness than the baseline cylindrical hole case with overall reduced coolant usage on the both pressure and suction sides of the airfoil. The second part of the study focuses on evaluating the performance on the midchord suction surface. While the hole designs studied in the first part were retained as baseline cases, two additional geometries were also tested. These include cylindrical and tripod holes with shaped (SH) exits. Film cooling effectiveness was found at four different blowing ratios. Results show that the tripod holes with and without shaped exits provide much higher film effectiveness than cylindrical and slightly higher effectiveness than shaped exit holes using 50% lesser cooling air while operating at the same blowing ratios. Effectiveness values up to 0.2–0.25 are seen 40-hole diameters downstream for the tripod hole configurations, thus providing cooling in the important trailing edge portion of the airfoil.


Author(s):  
Chenglong Wang ◽  
Lei Wang ◽  
Bengt Sundén ◽  
Valery Chernoray ◽  
Hans Abrahamsson

In the present study, the heat transfer characteristics on the suction and pressure sides of an outlet guide vane (OGV) are investigated by using liquid crystal thermography (LCT) method in a linear cascade. Because the OGV has a complex curved surface, it is necessary to calibrate the LCT by taking into account the effect of viewing angles of the camera. Based on the calibration results, heat transfer measurements of the OGV were conducted. Both on- and off-design conditions were tested, where the incidence angles of the OGV were 25 degrees and −25 degrees, respectively. The Reynolds numbers, based on the axial flow velocity and the chord length, were 300,000 and 450,000. In addition, heat transfer on suction side of the OGV with +40 degrees incidence angle was measured. The results indicate that the Reynolds number and incidence angle have considerable influences upon the heat transfer on both pressure and suction surfaces. For on-design conditions, laminar-turbulent boundary layer transitions are on both sides, but no flow separation occurs; on the contrary, for off-design conditions, the position of laminar-turbulent boundary layer transition is significantly displaced downstream on the suction surface, and a separation occurs from the leading edge on the pressure surface. As expected, larger Reynolds number gives higher heat transfer coefficients on both sides of the OGV.


1982 ◽  
Author(s):  
O. P. Sharma ◽  
R. A. Graziani

This paper presents the results of an analysis to assess the influence of cascade passage endwall flow on the airfoil suction surface mid-height boundary layer development in a turbine cascade. The effect of the endwall flow is interpreted as the generation of a cross flow and a cross flow velocity gradient in the airfoil boundary layer, which results in an extra term in the mass conservation equation. This extra term is shown to influence the boundary layer development along the mid-height of the airfoil suction surface through an increase in the boundary layer thickness and consequently an increase in the mid-height losses, and a decrease in the Reynolds shear stress, mixing length, skin friction, and Stanton number. An existing two-dimensional differential boundary layer prediction method, STAN-5, is modified to incorporate the above two effects.


1986 ◽  
Author(s):  
B. Lakshminarayana ◽  
P. Popovski

A comprehensive study of the three-dimensional turbulent boundary layer on a compressor rotor blade at peak pressure rise coefficient is reported in this paper. The measurements were carried out at various chordwise and radial locations on a compressor rotor blade using a rotating miniature “V” configuration hot-wire probe. The data are compared with the measurement at the design condition. Substantial changes in the blade boundary layer characteristics are observed, especially in the outer sixteen percent of the blade span. The increased chordwise pressure gradient and the leakage flow at the peak pressure coefficient have a cumulative effect in increasing the boundary layer growth on the suction surface. The leakage flow has a beneficial effect on the pressure surface. The momentum and boundary layer thicknesses increase substantially from those at the design condition, especially near the outer radii of the suction surface.


Author(s):  
David Händel ◽  
Reinhard Niehuis ◽  
Uwe Rockstroh

In order to determine the aerodynamic behavior of a Variable Inlet Guide Vane as used in multishaft compressors, extensive experimental investigations with a 2D linear cascade have been conducted. All the experiments were performed at the High-Speed Cascade Wind Tunnel at the Institute of Jet Propulsion. They covered a wide range of Reynolds numbers and stagger angles as they occur in realistic turbomachines. Within this work at first the observed basic flow phenomena (loss development, overturning) will be explained. For the present special case of a symmetric profile and a constant decreasing chord length along the vane height, statements about different spanwise position can be made by investigating different Reynolds numbers. The focus of this paper is on the outflow of the VIGV along the vane height. Results for an open flow separation on the suction side are presented, too. Stall condition can be delayed by boundary layer control. This is done using a wire to trigger an early boundary layer transition. The outcomes of the trip wire measurement are finally discussed. The objective of this work is to evaluate the influence of the stagger angle and Reynolds number on the total pressure losses and the deviation angle. The results of the work presented here, gives a better insight of the efficient use of a VIGV.


Sign in / Sign up

Export Citation Format

Share Document