Frequency-Response Matching to Optimize Wind-Turbine Test Data Correlation

1986 ◽  
Vol 108 (3) ◽  
pp. 246-251
Author(s):  
A. C. Hansen ◽  
T. E. Hausfeld

Pre-averaging is often applied to wind turbine test data to improve correlation between wind speed and power output data. In the past, trial and error or intuition have been used in the selection of pre-averaging time and researchers and institutions have differed widely in their pre-averaging practice. In this paper a standardized method is proposed for selection of the optimum pre-averaging time. The method selects an averaging time such that the test data are low-pass-filtered at the same frequency as the response frequency of the test wind turbine/anemometer system. A theoretial method is provided for estimation of the wind system transfer function as a function of the anemometer location, rotor moment of inertia, the stiffness of the connection between the rotor and the electrical grid, hub height, rotor speed and wind speed. The method is based in proven theory, repeatable, easy to use and applicable to a wide range of wind turbines and test conditions. Results of the transfer function predictions are compared with the measured response of two wind systems. Agreement between the predicted and measured response is completely adequate for the purposes of the method. Example results of calculated averaging times are presented for several wind turbines. In addition, a case study is used to demonstrate the dramatic effects of test design and data analysis methods on the results of a power coefficient measurement.

Author(s):  
A. Tourlidakis ◽  
K. Vafiadis ◽  
V. Andrianopoulos ◽  
I. Kalogeropoulos

Many researchers proposed methods for improving the efficiency of small Horizontal Axis Wind Turbines (HAWTs). One of the methods developed to increase the efficiency of HAWTs and to overcome the theoretical Betz limit is the introduction of a converging – diverging casing around the turbine. To further improve the performance of the diffuser a flange is placed at its outlet, which smoothes the flow along the diffuser interior, allowing larger diffusion angles to be utilized. The purpose of this research work is the aerodynamic design and computational analysis of such an arrangement with the use of Computational Fluid Dynamics (CFD). First, a HAWT rotor rotating at 600 RPM was designed with the use of the Blade Element Momentum (BEM) method. The three rotor blades are constructed using the NREL airfoil sections family S833, S834 and S835. The power coefficient of the rotor was optimised in a wind speed range of 5 – 10 m/s, with a maximum value of 0.45 for a wind speed of 7m/s. A full three-dimensional CFD analysis was carried out for the modeling of the flow around the rotor and through the flanged diffuser. The computational domain consisted of two regions with different frames of reference (a stationary and a rotating). The rotating frame rotates at 600 RPM and includes the rotor with the blades. All the simulations were performed using the commercial CFD software package ANSYS CFX. The Shear Stress Transport turbulence model was used for the simulations. Detailed flow analysis results are presented, dealing with the various investigated test cases, a) isolated turbine rotor, b) diffuser without the presence of the turbine, and c) the full turbine – diffuser arrangement for different flange heights and wind speeds. By varying the height of the flange and the wind speed, the effects of the above on the flow field and the power coefficient of the turbine were studied. The CFD resulting power coefficients are also compared and good agreement with existing in the literature experimental data was obtained. The results showed that there is a significant improvement in the performance of the wind turbine (by a factor from 2 to 5 on power coefficient at high blade tip speed ratio) and the proposed modification is particularly attractive for small wind turbines. The particular characteristics of the flow field, that are responsible for this improvement are identified and analysed in detail offering a better understanding of the physical processes involved.


2021 ◽  
Vol 8 (1) ◽  
pp. 29-39
Author(s):  
Yasir Abood ◽  
Tariq A. Ismail ◽  
Omar A. Abdulrazzaq ◽  
Haider S. Hussein

In this paper, the influence of blades number on the performance of pico wind turbine was investigated by using a small-motorized axial DC fan with a rated power of 4W. Fixed streaming air blower was used as a source of wind. Varying in wind speed was accomplished by changing the distance from the blower. A resistor equals to the turbine internal resistance was utilized as a load to collect the electrical power across the load at various wind speeds and for fans of different blades (1, 2, and 5). Values of the cut-in and cut-out speeds were extracted from the power plot. Rated power was recorded, as well. The results have shown that the rated power generated by turbine has decreased due to the reduction of blades number (i.e., reduction in solidity) from 2.6W for a 5-bladed turbine to 0.665W for a 2-bladed turbine and to 0.13W for a 1-bladed turbine. Moreover, the cut-in speed (initial electrical generating speed) has increased from 4.9m/s for 5-bladed to 8m/s for 2-bladed, then to 19.15m/s for 1-bladed. These results are explained by the balancing problems during rotation (polar asymmetrical rotor), and it is seen that the reduction of blades has made a sharp reduction in power coefficient.


2017 ◽  
Vol 2 (1) ◽  
pp. 97-114 ◽  
Author(s):  
Giorgio Demurtas ◽  
Troels Friis Pedersen ◽  
Rozenn Wagner

Abstract. The objective of this investigation was to verify the feasibility of using the spinner anemometer calibration and nacelle transfer function determined on one reference wind turbine, in order to assess the power performance of a second identical turbine. An experiment was set up with a met mast in a position suitable to measure the power curve of the two wind turbines, both equipped with a spinner anemometer. An IEC 61400-12-1-compliant power curve was then measured for both wind turbines using the met mast. The NTF (nacelle transfer function) was measured on the reference wind turbine and then applied to both turbines to calculate the free wind speed. For each of the two wind turbines, the power curve (PC) was measured with the met mast and the nacelle power curve (NPC) with the spinner anemometer. Four power curves (two PCs and two NPCs) were compared in terms of AEP (annual energy production) for a Rayleigh wind speed probability distribution. For each wind turbine, the NPC agreed with the corresponding PC within 0.10 % of AEP for the reference wind turbine and within 0.38 % for the second wind turbine, for a mean wind speed of 8 m s−1.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


2012 ◽  
Vol 215-216 ◽  
pp. 1323-1326
Author(s):  
Ming Wei Xu ◽  
Jian Jun Qu ◽  
Han Zhang

A small vertical axis wind turbine with wind speed self-adapting was designed. The diameter and height of the turbine were both 0.7m. It featured that the blades were composed of movable and fixed blades, and the opening and closing of the movable blades realized the wind speed self-adapting. Aerodynamic performance of this new kind turbine was tested in a simple wind tunnel. Then the self-starting and power coefficient of the turbine were studied. The turbine with load could reliably self-start and operate stably even when the wind velocity was only 3.6 m/s. When the wind velocity was 8 m/s and the load torque was 0.1Nm, the movable blades no longer opened and the wind turbine realized the conversion from drag mode to lift mode. With the increase of wind speed, the maximum power coefficient of the turbine also improves gradually. Under 8 m/s wind speed, the maximum power coefficient of the turbine reaches to 12.26%. The experimental results showed that the new turbine not only improved the self-starting ability of the lift-style turbine, but also had a higher power coefficient in low tip speed ratio.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6167
Author(s):  
Fang Feng ◽  
Guoqiang Tong ◽  
Yunfei Ma ◽  
Yan Li

In order to get rid of the impact of the global financial crisis and actively respond to global climate change, it has become a common choice for global economic development to develop clean energy such as wind energy, improve energy efficiency and reduce greenhouse gas emissions. With the advantages of simple structure, unnecessary facing the wind direction, and unique appearance, the vertical axis wind turbine (VAWT) attracts extensive attention in the field of small and medium wind turbines. The lift-type VAWT exhibits outstanding aerodynamic characteristics at a high tip speed ratio, while the starting characteristics are generally undesirable at a low wind speed; thus, how to improve the starting characteristics of the lift-type VAWT has always been an important issue. In this paper, a lift-drag combined starter (LDCS) suitable for lift-type VAWT was proposed to optimize the starting characteristics of lift-type VAWT. With semi-elliptical drag blades and lift blades equipped on the middle and rear part outside the starter, the structure is characterized by lift-drag combination, weakening the adverse effect of the starter with semi-elliptical drag blades alone on the output performance of the original lift-type VAWT and improving the characteristics of the lift-drag combined VAWT. The static characteristic is one of the important starting characteristics of the wind turbine. The rapid development of computational fluid dynamics has laid a solid material foundation for VAWT. Thus the static characteristics of the LDCS with different numbers of blades were investigated by conducting numerical simulation and wind tunnel tests. The results demonstrated that the static torque coefficient of LDCS increased significantly with the increased incoming wind speed. The average value of the static torque coefficient also increased significantly. This study can provide guidelines for the research of lift-drag combined wind turbines.


Author(s):  
Hyunseong Min ◽  
Cheng Peng ◽  
Fei Duan ◽  
Zhiqiang Hu ◽  
Jun Zhang

Wind turbines are popular for harnessing wind energy. Floating offshore wind turbines (FOWT) installed in relatively deep water may have advantages over their on-land or shallow-water cousins because winds over deep water are usually steadier and stronger. As the size of wind turbines becomes larger and larger for reducing the cost per kilowatt, it could bring installation and operation risks in the deep water due to the lack of track records. Thus, together with laboratory tests, numerical simulations of dynamics of FOWT are desirable to reduce the probability of failure. In this study, COUPLE-FAST was initially employed for the numerical simulations of the OC3-HYWIND, a spar type platform equipped with the 5-MW baseline wind turbine proposed by National Renewable Energy Laboratory (NREL). The model tests were conducted at the Deepwater Offshore Basin in Shanghai Jiao Tong University (SJTU) with a 1:50 Froude scaling [1]. In comparison of the simulation using COUPLE-FAST with the corresponding measurements, it was found that the predicted motions were in general significantly smaller than the related measurements. The main reason is that the wind loads predicted by FAST were well below the related measurements. Large discrepancies are expected because the prototype and laboratory wind loads do not follow Froude number similarity although the wind speed was increased (or decreased) in the tests such that the mean surge wind force matched that predicted by FAST at the nominal wind speed (Froude similarity) in the cases of a land wind turbine [1]. Therefore, an alternative numerical simulation was made by directly inputting the measured wind loads to COUPLE instead of the ones predicted by FAST. The related simulated results are much improved and in satisfactory agreement with the measurements.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
René M. M. Slot ◽  
Lasse Svenningsen ◽  
John D. Sørensen ◽  
Morten L. Thøgersen

Wind turbines are subjected to fatigue loading during their entire lifetime due to the fluctuating excitation from the wind. To predict the fatigue damage, the design standard IEC 61400-1 describes how to parametrize an on-site specific wind climate using the wind speed, turbulence, wind shear, air density, and flow inclination. In this framework, shear is currently modeled by its mean value, accounting for neither its natural variance nor its wind speed dependence. This very simple model may lead to inaccurate fatigue assessment of wind turbine components, whose structural response is nonlinear with shear. Here we show how this is the case for flapwise bending of blades, where the current shear model leads to inaccurate and in worst case nonconservative fatigue assessments. Based on an optimization study, we suggest modeling shear as a wind speed dependent 60% quantile. Using measurements from almost one hundred sites, we document that the suggested model leads to accurate and consistent fatigue assessments of wind turbine blades, without compromising other main components such as the tower and the shaft. The proposed shear model is intended as a replacement to the mean shear, and should be used alongside the current IEC models for the remaining climate parameters. Given the large number of investigated sites, a basis for evaluating the uncertainty related to using a simplified statistical wind climate is provided. This can be used in further research when assessing the structural reliability of wind turbines by a probabilistic or semiprobabilistic approach.


2021 ◽  
Author(s):  
Moshe Zilberman ◽  
Abdelaziz Abu Sbaih ◽  
Ibrahim Hadad

Abstract Wind energy has become an important resource for the growing demand for clean energy. In 2020 wind energy provided more than 6% of the global electricity demand. It is expected to reach 7% at the end of 2021. The installation growth rate of small wind turbines, though, is relatively slow. The reasons we are interested in the small vertical axis wind turbines are their low noise, environmentally friendly, low installation cost, and capable of being rooftop-mounted. The main goal of the present study is an optimization process towards achieving the optimal cost-effective vertical wind turbine. Thirty wind turbine models were tested under the same conditions in an Azrieli 30 × 30 × 90 cm low-speed wind tunnel at 107,000 Reynolds number. The different types of models were obtained by parametric variations of five basic models, maintaining the same aspect ratio but varying the number of bucket phases, the orientation angles, and the gaps between the vanes. The best performing turbine model was made of one phase with two vanes of non-symmetric bipolynomial profiles that exhibited 0.2 power coefficient, relative to 0.16 and 0.13 that were obtained for symmetrical polynomial and the original Savonius type turbines, respectively. Free rotation, static forces and moments, and dynamic moments and power were measured for the sake of comparison and explanation for the variations in performances of different types of turbines. CFD calculations were used to understand the forces and moment behaviors of the optimized turbine.


2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879954
Author(s):  
Soo-Yong Cho ◽  
Sang-Kyu Choi ◽  
Jin-Gyun Kim ◽  
Chong-Hyun Cho

In order to augment the performance of vertical axis wind turbines, wind power towers have been used because they increase the frontal area. Typically, the wind power tower is installed as a circular column around a vertical axis wind turbine because the vertical axis wind turbine should be operated in an omnidirectional wind. As a result, the performance of the vertical axis wind turbine depends on the design parameters of the wind power tower. An experimental study was conducted in a wind tunnel to investigate the optimal design parameters of the wind power tower. Three different sizes of guide walls were applied to test with various wind power tower design parameters. The tested vertical axis wind turbine consisted of three blades of the NACA0018 profile and its solidity was 0.5. In order to simulate the operation in omnidirectional winds, the wind power tower was fabricated to be rotated. The performance of the vertical axis wind turbine was severely varied depending on the azimuthal location of the wind power tower. Comparison of the performance of the vertical axis wind turbine was performed based on the power coefficient obtained by averaging for the one periodic azimuth angle. The optimal design parameters were estimated using the results obtained under equal experimental conditions. When the non-dimensional inner gap was 0.3, the performance of the vertical axis wind turbine was better than any other gaps.


Sign in / Sign up

Export Citation Format

Share Document